ey

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Computer
““Museum

ANNOUNCING THIS MONTH’S CALCULATOR WINNER

Harvey Bernard, of Hewlett-Packard in Rockville, Maryland, is this month’s winner of an HP-21 calculator. Harvey's winning
article is Type 6 Files and appears in this month's issue of the Communicator.

Harvey's article was judged to be the best based on the areas of clarity, completeness of subject coverage and interest to
largest segment of our readership. These three points are the criteria on which we hope to judge future articles, also.

Alas, there is no calculator winner among our customer readership, since there were no entries. We hope to see this rectified in
our next issue. We would also like to encourage more articles from the Hewlett-Packard field employees, so next month, there
will be a possibility of three winners: customer, HP Data Systems Division (Division 22) and HP Other.
The eligibility rules are:
1. The calculator is awarded to the best feature-length article which falls in any one of the following categories:
Operating Systems
Instrumentation
Operations Management
Computation
2. Feature-length is defined as at least 1600 words, exclusive of listings and illustrations.
3. No individual will be awarded more than one calculator per calendar year.

4. In the case of multiple authors, the calculator will be awarded to the first listed author of the winning article.

5. Anarticle which is part of a series will compete on its own merits with other articles in this issue. The total of all articles in the
series will not compete against the total of all articles in another series.

6. Employees of Technical Marketing in the HP Data Systems Division (Division 22) are not eligible.
All entries will be judged by a team of at least three people in Technical Marketing.
The deadlines for articles for the next two issues are:

Volume 2, Issue 6 — October 15th
Volume 3, Issue 1 — December 15th

All winners are announced in the HP 1000 Communicator in which their winning article appears.

Thisis also a good time to talk about our recent addition — OEM Corner. This section is for HP customers who market software
of their own development for use on HP 1000 systems. The software may be part of a system package which the OEM delivers
as a "turnkey” package or a stand-alone software package. HP has many quality OEMs whose products often address markets
which are specialized or aimed at a specific application area. Therefore, these products complement the systems offered by
HP itself.

We have no article for our OEM corner in this issue. However, we are looking forward to receiving some contributions from many
of our fine OEMs,

To qualify for inclusion in OEM corner, an article should be of general interest to our readers and have educational value. By that
we mean it should describe a technique or method of doing something. The article should contain examples and be
application-oriented rather than theoretical. We encourage the OEM to describe the features of his product, but remember that
the purpose is to educate our readers.

The OEM is encouraged to place at the end of the article up to 150 words of purely commercial information. This may include
prices of the product and ordering information.

The article should be a minimum of four typed, double-spaced pages. We would prefer that the maximum length not exceed ten
pages, but this restriction can be waived.

Deadlines for specific issues of the Communicator are the same as those mentioned above for the calculator entries. Address
all communications to

Editor HP 1000 COMMUNICATOR
Hewlett Packard Data Systems Division
11000 Wolfe Road
Cupertino, California 95014
Building 42U

All communications should include the author's address and phone number.

If possible, inciude the text of the article in machine-readable form, i.e., a file on magnetic tape, mini-cartridge or paper tape.

CONTENTS

USER'S QUEUE Bit Bucket
e Software Samantha........................ 34
Operating Systems e New Features are Added to
BASIC/000ccoviiiiiii e 36
e RTE-IV — Getting One’s Act Together 6
o TypebBFiles oot 11
o Driver Writing Techniques 17
Bulletins
Operations Management e RTE-I/Il to RTE-IV Upgrade
Course Available 38
e Designing a Data Base for Modern ® Setting Up a Training Program 38

—_
[{e]
®

Factory Management New and Revised Courses 40-41
e DebuggingIMAGE 25 ® Training Schedule 42

The User's Queue includes announcements of new programs added to the Contributed Library (LOCUS) and tips, techniques
or methods suggested by our readers.

NEW CONTRIBUTED PROGRAMS

The information below serves as an update to the Data Systems LOCUS Program Catalog (22000-90099).

The new contributed programs listed below are now available. Contact your local HP Sales Office to order Contributed Library
material, or (if you are in the U.S.), you can use the direct mail order form at the back of the Communicator 1000.

Please note the following corrections to previous entries in the catalog. LOCUS programs 22658A-K21 and 22682-10993 are
not available on mini-cartridge medium.

22682-18996

E-SERIES MICROCODED FAST FOURIER TRANSFORM

This subroutine performs a microcode enhanced FFT (Fast Fourier Transform) with automatic scaling
on overflow.

Data to be transformed must be presented as a single integer array. The data may be complex or real.
If complex, the odd subscripted elements are the “reals”, and the even subscripted elements are the
“imaginaries”. If real, the “reals” are contiguous.

A complex transform of size N requires 2*N memory locations. A real transform of size N requires N
memory locations.

Execution time for 1024 complex points is about 200 ms. Execution time for 1024 complex (all
imaginaries = 0) points or 1024 real points is about 100 ms. Each overflow increases execution time by
4 ms for complex transforms; each overflow increases execution time by 2 ms for complex (all
imaginaries = Q) or real transforms.

The assembly language portion of the subroutine requires 269 memory locations. The microcoded
portion requires 512 words of control store.

There are three calling sequences: complex, complex (all imaginaries = 0), and real.

22682-18996 PT $40

22682-13397

22682-13399

22682-13398

LIST HP-IB CONFIGURATION (CNFG)

CNFG is a program which points out the current HP-IB configuration in an HP1000 system. The
following calling sequences are available:

RU,CNFG — for printing all HP-IB EQT's and LU’s

RU,CNFG,input,list ,EQT — for a particular EQT and all associated LU's
RU,CNFG,,, ,LU — for a particular LU

RU,CNFG,,,EQT,LU — for a matching EQT and LU

CNFG must be compiled on the 1805 revision of FTN4 or later.

22682-13397 mini-cartridge $40

OBJECT MODULE LISTER (LUCY)

This program inputs a type 5 binary relocatable file name (namr) and produces a consolidated listing of
its characteristics. The listing includes program name, type, extended NAM record, local length,
common length, base page length, producer, all entry points, all externals, EMA record, and transfer
address if amain program. The program can be run in batch or conversational mode and has extensive
error checking, including BREAK capability. The listing format is suitable for easy-to-read
documentation.

22682-13399 mini-cartridge $35

RTE PROGRAM TIME SHARE PROCESSOR (TMSHR)

This program allows the RTE user to time-share up to 64 compute-bound programs, i.e., it serves as an
on-line Real-Time Execution Monitor. The user runs the program with the RU or ON command to pass it
configuration information or place it in the time-list for periodic execution to perform the time-sharing
function. While in time-share mode of operation, the program time-slices program execution of all
entered program names according to each program’s configuration information. The program takes
only 2K words of memory and can run in any area of RTE, aithough memory-resident:is suggested.

22682-13398 mini-cartridge $35

LETTERS

We have lots of letters from our readers this month. It's good to see. The first letter is from John Durgin, who has both correction
to “A Solution to the Multi-Terminal Blues” and more information for us.

“The article entitled "A Solution to the Multi-Terminal Blues” (Issue 16) was a great help for our lab, where we really have
multi-terminal blues! However, in implementing the transfer file (page 11) suggested, we discovered one further 'bug’, in

addition to the correction of Volume II, Issue 2. When the transfer file terminates due to lack of blank ID segments, the type 6 file
is not renamed to EDIO0. When the transfer file is run again, it hangs up in a loop between statements 8 and 11, since EDIOO

cannot be found. The solution is simply to add the following directive after the AN message of statement 21.

:RN,3G:SC:-2,EDIOO
Also, the last line should be changed to:
: IF, ,EQ, ,-7

Being short of long 1D segments, we opted to utilize this transfer file for several programs and have found it most helpful!
Thanks!

Here's another suggestion for people with multi-terminal blues. When FORTRAN programs encounter efrors in execution, e.g.,
library errors, formatter errors, pause and stop messages, those messages are printed on certain default devices. This problem
can be solved with the following assembly language subroutine and suggested FORTRAN calling sequence.

Keep up the good work in the COMMUNICATOR!

Sincerely,

John Durgin

Fluid Dynamics and Diffusion Lab
Colorado State University

Fort Collins, Colorado 80523

ASMB,R,L

NAM LIBER,7
EXT ERO.E,.ENTR,PAU.E,FMT.E
ENT LIBER

LU BSS 1

LIBER NOP
JSB .ENTR
DEF LV
LDA LU,I
STA ERO.E
STA PAU.E
STA FMT.E
JMP LIBER,I
END

FTN4,L
PROGRAM PROGA

DIMENSION IPAR(S)
CALL RMPARCIPAR)
LU=IPARC1)
IFCLU.LT.1)LU=1
CALL LIBERCLU)

Many thanks for the correction, John, and for the compliment, too.

3

The next letter, from C. C. Skelton, also contains a correction to a previous article.

“In a recent issue of the COMMUNICATOR (Issue 14), in the 'Bit Bucket’ section, Jim Bridges described an algorithm to give
programs the capability of using file manager calls on an LU. A problem occurs if the LU passed to the algorithm is associated
with a subchannel other than zero. The equation:

IEQT=IGETCIDRT+LU-1),

which is supposed to return the equipment table address of the channel, also has in bits 11 through 15 the subchannel number.
This leads to an invalid offset into the equipment tabie. Masking out bits 7 through 15 corrects the problem.

Sincerely yours,

C.C. Skelton

Eli Lilly and Company
Clinton Laboratories
Box 99

Clinton, Indiana 47842"

Again, thanks for the correction. Our readers are really sharp.
John Connor has a suggestion for all of us to try.

“I have been using a technique for passing mixed argument types to general purpose subroutines, which | believe to be both
efficient and easy to code.

Given an application, say a numeric to alpha conversion subroutine, the normal argument list might be:
SUBROUTINE NTOACIVALUE,RVALUE,DPVALU,ITYPE,STRING,LENGTH)

The above arguments being defined as IVALUE=integer value to be converted, RVALUE=real value to be converted and
DPVALU=double precision value to be converted. ITYPE would define which one to use.

SUBROUTINE NTOA(DPVALU, ITYPE,STRING,LENGTH)

In this case DPVALU is type as double precision and can be processed as follows:

SUBROUT INE NTOA(DPVALU,ITYPE,STRING,LENGTH)
INTEGER STRINGCLENGTH)
DOUBLE PRECISION DPVALU,DVALUE
EQU IVALENCE(DVALUE ,VALUE, IVALUE)
DVALUE=DPVALU
N=ITYPE
G0 70 ¢10,20,30),N
c PROCESS A DP-VALUE
c USING DVALUE
10 CONTINUE

c PROCESS A REAL VALUE
c USING VALUE
20 CONTINUE

c PROCESS AN INTEGER VALUE
c USING IVALUE
30 CONTINUE

In the above code, three words are moved to DVALUE starting with the word address passed. Given the proper code in ITYPE,
the user need not care what is moved beyond what is needed. (Providing something is there.)

4

It is equally easy to return values this way and only a minor change is necessary. Assume in this case we are going to extract a
value from a string. The routine might look like this.

SUBROUTINE ATONCSTRING,LENGTH,ITYPE, IVALUE)
INTEGER STRINGCLENGTH), IVALUE(3), IV(3)
DOUBLE PRECISION DPVALU
EQUIVALENCE(DPVALU,VALUE,IV(1))

FIRST SECTION WOULD
DETERMINE DPVALU,VALUE OR
IVC1)> BASED ON ITYPE

OO0

BRANCH TO PROPER
RETURN
G0 TO ¢100,200,300),ITYPE
c RETURN A DP-VALUE
100 DO 101 I=1,3
101 IVALUECI)=IVC(D)
RETURN
c RETURN A REAL VALUE
200 DO 201 I=1,2
201 IVALUECD)=IVCD)

o0

RETURN
c RETURN AN INTEGER VALUE
300 IVALUE=1V

RETURN

END

| should point out that the user should be careful using the first example. Depending on where the first word is stored, it is
possible to create a memory protect violation. Should the last word of a labeled common block or system common block be
passed, an error could possibly occur. It is possible to avoid the possibility of this by setting up an equivalence in the calling
routine and moving the value there, always passing the local variable as the argument.

I hope this will be of use to COMMUNICATOR readers as | have found many features useful to me.

Yours truly,

John Conner

Digicon Geophysical Corporation
3701 Kirby Drive

Houston, Texas 77098”

| hope so, too, John. I'm sure it will be. Many thanks to all our correspondents for their suggestions.

RTE-IV — GETTING ONE’S ACT TOGETHER

David L. Snow and Shaila P. Kapoor

This is the second in a series of articles by the RTE-1V development team describing the inner workings of the RTE-IV operating
system. These articles go into some depth and therefore assume that the reader has studied and become familiar with the
material in the RTE-IV reference manuals. The article on RTE-IV memory structure in Volume 1I, Issue 2 of the
COMMUNICATOR/1000 will be of use in reading this article.

The RTE-IV operating system doesn't, as many people assume, just spring into life at bootup time. Besides going through a
several stage bootstrapping process, it must, among other things, initialize various lists, establish constants and maps, begin
the time-base generator and, optionally, allow the user to modify his I/O and/or memory configuration. These processes can be

divided into three areas which we will discuss in some detail:

RTE-IV Bootup
RTE-IV /O and Memory Reconfiguration
RTE-IV Operating System Startup

RTE-IV BOOTUP

“Bootstrapping” is a process by which the user reads into memory a short series of instructions which when executed, will read
into memory a larger set which may be used to read in an even larger set. The HP1000 computers (formerly known as the 21MX
computers) include a series of ROM boots which, when loaded into memory by the computer front panel, will execute the code
loaded into the last 64 words of the first 32 pages of memory. For disc ROM boots (also known as Basic Binary Disc Loaders)
these 64 words of code will load into memory beginning at location 20114 the 128 words stored at track 0, sector O of the
specified disc surface. These 128 words are known as the boot extension. The disc boot then transfers control to location 2055,
or relative location 444 in the boot extension.

For RTE-IV systems, the boot extension will be used to read into the first 32 pages of memory (see figure 1) from track O, sector
2 of the system disc the code representing the system base page, table area |, driver pantition 1, common, system driver area,

table area Il, the operating system and $CNFG, the first half of the reconfiguration program which occupies the first chunk of
system available memory (SAM). Before doing this however, the boot extension must accomplish two tasks. First it checks the

front panel switch registers to determine if bit 5 was set at bootup. If set, the user is indicating that he wishes to do 1/O or

memory reconfiguration so the boot extension executes a HLT 77. At this point the user may indicate a modification of the
system disc and/or system console /O configuration by setting bit 15 of the switch register and inserting the disc’s select code
into bits 6-11 and the system console’s select code into bits 0-5.

Once RUN is pushed, the boot extension accomplishes its second task — moving itself to location 77500, of the thirty-second
page of physical memory. This is required since the boot extension will be loading the system into the lower 31 pages. After
moving itself out of the way, the boot extension configures its disc /O instructions to any new disc select code and then loads
into memory the operating system from the base page up through the configurator program (first part of SAM). If the load is
successful, the boot extension will execute a JMP 3,1. Since the generator has stored the starting location of the operating
system ($STRT in the Scheduler) into location three, this will cause an entry into the system'’s startup code.

If the user did not specify I/O or memory reconfiguration by initially setting bit 5 of the switch register, then the process is the
same except that the HLT 77 is not executed and the generator specified select code for the system disc is used instead.
RTE-IV /O AND MEMORY RECONFIGURATION

Before passing control to the I/O configuration program, $STRT intializes the following memory bounds constants contained in
table area Il

$CMST — Logical/physical starting page of common.
$COML — Number of pages of common.

$SDA — Logical/physical starting page of the system driver area.

$SDT2 — Number of pages occupied by the system driver area and table area II.
$RLB — Logical starting page of the memory resident library.

$RLN — Number of pages of memory resident library.

6

After setting these constants, $STRT sets up the system map to reflect the prereconfiguration memory layout, enables the map
with a SJP instruction and transfers control to the configuration program $CNFG, which was loaded by the boot extension into
the first chunk of SAM.

The configurator program is divided into two parts which are relocated as separate programs, $CNFG and $CNFX, by the
generator. The first part of the configurator, $CNFG, is relocated as a type 16 program. Type 16 is a special type used only for
the configurator which signals the generator to load $CNFG as a system module overlaying the default SAM. The second part of
the configurator, SCNFX, is relocated by the generator as a type 3 background disc resident program. It is loaded into memory
by $CNFG under a background disc resident program map (see Figure 2).

The configurator program is divided to make more memory available to it since it cannot entirely fit in the first part of SAM. By
making $CNFX a type 3 program, it can access all the system entry points and thus communicate with SCNFG. $CNFG has to
reside in the first part of SAM as a system module, so that it can use the $XSIO routine in RTIOC for input and output. EXEC calls
cannot be used since the system has not been initialized. The work load divided between $SCNFG and $CNFX is based only
upon how much code can fit in the first block of SAM. $CNFG will load the memory resident and driver partitions, reconfigure I/O
and contain the I/O subroutines also to be used by $CNFX. $CNFX will handle memory reconfiguration.

The $CNFG program clears all interrupts as soon as it is given control. It then saves the base page locations SYSTY (EQT entry
address of the system TTY), DUMMY (privileged /O card location) and EQT1-EQT10 and clears them. Clearing SYSTY
prevents the user from gaining control of the system by striking a key on the keyboard of the system console and getting a
prompt. DUMMY is cleared to prevent any privileged interrupts. SKEDD is cleared and $LIST is set to 1, to prevent any
scheduled programs from running. These locations will be restored just before SCNFG returns control to $STRT. If the console
or list device is buffered, SCNFG will clear the B bit in word 4 of the device's EQT to make it unbuffered so that SAM is not
needed for I/O. The original buffered or unbuffered status will be restored before returning control to the system. I/O errors
cannot be handled due to the fact that operator console capability is taken away from the user. If an /O error does occur, the
boot-up procedure will have to restart. The SCNFG program will pick up the new select code (if any) for the system disc from the
switch register and reconfigure it in memory so that disc accesses can be made for loading the memory resident area and
driver partitions. Since the disc driver is required to load these additional areas, the generator forced the system disc driver into
driver partition 1. This driver partition is the only one ioaded into memory by the boot extension (see Figure 1).

170 reconfiguration is performed in $CNFG by assigning the current select code’s trap cell and interrupt table entry to the new
select code obtained by prompting the user for changes. The equipment table entry pointing to the current select code is
changed to point to the new select code. Initially, the changes needed to be made for I/O reconfiguration are recorded in tables
in SCNFG's area of memory. At the end of the I/O reconfiguration, these changes are transferred to the trap cell, interrupt table
and equipment tables in the system in memory. To enable the configurator to load the driver partitions and memory resident
programs and also to perform I/O and memory reconfiguration interactively, the system disc, system console and the list device
select code configurations have to be changed in the actual tables in the system in memory before the reconfiguation process
can begin.

To optionally make 1/O reconfiguration permanent, the following tables and base page locations must be written out on disc:
interrupt table, trap cells, fourth word of all EQT's, first word of the device reference table (DRT) (which is the entry for the
system console) and base page locations TBG, SYSTY and DUMMY.

Prior to writing the interrupt table on the disc, its entries for the new console and list device select codes are saved. These are
replaced with what the entries were before any 1/O was performed to these two devices. The saved entries are restored after the
interrupt table is written on disc. This is done because some of the console and list device drivers when executed for the first
time, change the interrupt table entries.

$CNFG now enters the memory reconfiguration phase. The user is allowed to define up to 100 bad pages of memory in the
user’s area. The number of pages in the SAM extension as it is currently defined are determined from the system entry point
$MPS2. The physical starting page number for SAM extension is determined by adding contents of $SENDS, number of pages
taken up by the driver partitions, number of pages for memory resident base page, library and programs. $CNFG then checks
to see if this resulting starting page of SAM extension is included in the list of bad pages. If so, the start page of the SAM
extension is incremented to avoid the bad page (and any other consecutive bad pages). If SMPS2 is not zero, this start page is
compared with it. If they do not match, $MPS2 is changed to match this newly evaluated starting page. This case may happen if
some previously bad pages at the start of the SAM extension were replaced with a new memory module or some pages at the
start of SAM extension went bad.

ROM BOOT
BOOT EXTENSION

AN

$SCNFG (SAM)

OPERATING SYSTEM

TABLE AREA II

SYSTEM DRIVER AREA

BACKGROUND COMMON

REAL TIME COMMON

SUBSYSTEM GLOBAL AREA

DRIVER PARTITION 1

SYSTEM AVAILABLE MEMORY

TABLE AREA 1

SYSTEM BASE PAGE

Figure 1. Addressing Space for $CNFG

77777
77700

77500

2000

\

$CNFX

TABLE AREA 1I

DRIVER PARTITION

__SYSTEM AVAILABLE MEMORY _

TABLE AREA 1

BASE PAGE

Figure 2. Addressing Space for $CNFX

The user is now given the chance to increase the size of his SAM extension. $CNFG will allow the user to define a SAM
extension which is broken up into as many as five contiguous areas by bad pages. The system map is modified to reflect any
changes caused by modifications to the SAM extension.

SCNFG now transfers control to the configurator extension, $CNFX, which prompts the user for redefinition of partitions, the
assigning of programs to partitions and the reserving of partitions. $CNFX picks up blocks of memory between bad pages or
pages remaining if there are no more bad pages and prompts the user to define partitions for it. Partitions defined for a
particular block of memory must use up all the pages in the block, otherwise $CNFX asks the user to redefine partitions for that
particular block. $CNFX fills the start page of the partition, number of pages, reserved bit R and RT or BG values into the
memory ailocation table (MAT) entry for the partition. If the number of pages in the partition is larger than the maximum
addressable partition size, $CNFX asks if subpartition definition is desired. If the response is yes, the partition just defined
becomes a mother partition and the M bit in the MAT entry is set. Every partition following with an 'S’ as the fourth parameter is a
subpartition. The block of memory to be allocated to subpartitions is the same as that used by the mother partition. The
subpartition link word (SLW) of the mother partition is made to point to the first subpartition, SLW of the first subpartition points to
the second and so on. SLW of the last subpartition points back to the mother partition.

After all the partitions have been defined, SCNFX threads them into either real time, background or chain partition (mother) free
lists. Several passes have to be made through the MAT table to thread each list. SMCHN, $MBGP, $SMRTP, $BGFR, $RTFR, and
$CFR entry points are set up by $CNFX while threading these lists.

To optionaily make memory reconfiguration permanent, the memory allocation table, ID segments, and system entry points
$MCHN, $MBGP, $MRTP, $BGFR, $RTFR and $CFR are rewritten on the disc. Finally, the configurator program changes the
name of $CNFX to “,,,,,,” so that the configuration extension cannot be run online and returns to the system startup routine.

RTE-IV OPERATING SYSTEM STARTUP

Once control is returned to $STRT from the configurator programs, the system resumes its initialization. Code for the startup
process is contained in almost every module of the operating system. Since this code is executed once, buffers which will be
destroyed during system operation are used to execute most of the code. RTE-IV first calls $RTN to collect all available SAM
and return this memory to the system. The generator stores information on up to five chunks of SAM in base page words EQT1
to EQT10. Each two words represent one area of SAM with word 1 indicating the logical address and word 2 (which may be
zero) indicating the length. Currently the generator includes pointers to three chunks of SAM — the main area of SAM where
$CNFG was loaded, the SAM extension, and the unused portion of the last page of table area t. $RTN will link the chunks of
SAM into a list in order of increasing size and increment a counter indicating the "maximum SAM now”. When all of SAM is
collected, RTE-IV transfers control to $ALC where the "maximum SAM now” is posted as the “maximum SAM ever”.

After setting up SAM, RTE-IV initializes the non-system map registers. The user map is set to reflect the memory resident
program map, while the Port A and B maps are set up to reflect the system map. Pointers are set up to allow the future swapping
of extended memory areas in chunks equal to the area between the start of common and the end of the user map. The base
page fence is set up as the last user link plus one with the lower portion mapped.

Next, RTE-IV initializes the pointers to the memory allocation table which defines partitions. If no real-time partitions exist, the
background list of partitions will be used for real-time programs. If no background partitions exist, the real-time list of partitions
will be used for background programs. If no mother partitions exist, the background list of partitions will be used for programs
requiring mother partitions. These algorithms assume that either the background or real-time partition lists is not empty.

The swap delay is now obtained from the base page word SWAP where the generator placed it, negated and stored for use by
the Dispatcher. Next, the minimum track size in sectors between the two system discs, LU 2 and 3, is computed and saved to
be used in swapping programs. The program FMGR is now scheduled and forced to the head of the scheduled list in front of
any startup program define by the generator. FMGR's priority is set to 0 with its true priority stored in its ID temporary word 2.
The length of the track assignment table, which is stored in base page word TATLG, is set to —1 with its true value stored in
FMGR's ID temporary word 1. By setting the track assignment tables’s length to — 1, all track allocations will be inhibited until
the FMGR can properly set up the file system. The FMGR will restore the track assignment table's length and FMGR's priority
when it initially executes.

The ID addresses for D.RTR, FMGR and SMP are now computed and saved for future use by the system. The list of user
partitions are checked to see if there is a partition of sufficient size to run FMGR or D.RTR. I not, a HLT 10 is executed. This
situation can exist since the reconfiguration process allows the user to redefine his partitions at bootup. The constant D$RN,
giving the address of the resource number table, is made direct. The time base generator is started and the “SET TIME”
message is sent to the system console. The privileged /O card is initialized, the disc protect option ($PDSK,AB, 1 at generation)
is setup and a HLT 2 and HLT 3 are stored in locations 2 and 3 of the system map. The system now transfers control to $XEQ in
the dispatcher to begin normal system operation. At $XEQ the following three steps will occur:

1. Process interrupts for the “SET TIME"” message. The user should set the real time clock with the TM command or it will
default to 8:00 A.M., January 5, 1978.

2. Dispatch FMGR which will setup the file system, restore his priority and base page word TATLG, and try to transfer to the
file WELCOM.

3. Execute any user defined startup program.
Having done all the items discussed in this article, the system considers that it has its act together and allows the user to begin

executing his programs. In the next issue, we will discuss Extended Memory Arrays or “How to fit a million words into two
thousand locations”.

10

TYPE 6 FILES

Trying to explain the difference between files and programs to a beginner is worse than Chinese water torture. The poor novice
has apoplexy when you reveal that files can contain a program’s source as well as object code. So you give him heart massage
and this bit of advice: programs are executable, files are not. He is fine until he discovers that type 6 files are executable! Then
the neophyte experiences acute coronary pain. | suggest you give him a copy of this article.

WHAT DO THEY LOOK LIKE?

Atype 6 file contains memory image (executable) code, and its sole purpose in life isto be "“run.” Like any file, atype 6livesina
FMGR area (a cartridge) on the disc. Like other files, it has a directory entry (see figure 1) pointing to it. The first block (128
words) of the type 6 contains information normally found in a program'’s ID segment: program priority, type, etc. The remainder
of the file is an exact copy of a program which has previously been loaded.

When it is created, a type 6 looks like a type 3, 4, or 5 file: an EOF mark, a —1, is neatly tucked into its first word. However, in
order not to corrupt its memory image code with the length words that normally bracket variable length records, type €'s are
accessed as and look like a type 1. Thus, a type 6 is a hybrid among files, as you can see in figure 2.

bit 15l | 8 { 7 | l0 CR parameters:
word 0

1 6-character file name +——— file name
2
3 [file type (1 thru 32767) file type
4 [starting track
5 |extent # starting sector
6 | # of sectors in file *—————— file size *2
7 |record length (type 2 only) <~ record size
8 |security code ~———security (namr)
9

10

1 open flags in bit 15

program ID segment addresses
12 of programs opening file in
bits 14-0

13

14

15

Figure 1. Disc File Directory Entry
1

Memory-Image Program File Formats (Type 6)

Files created by the SP command as memory-image program files are always accessed as type
1 files (fixed length, 128-words per record).

Word Content
0 (-1 <———— EOF unless forced to
type 1
1-5 not used
6 |priority

7 |primary entry point

8-13 not used

14 |program type

1st two

sectors 15-16 not used

contain

program’s 17-19 [time parameters

ID-segment 20 [substatus 1 - word 21 of ID segment
information 21 [substatus 2 - word 22 of ID segment

22 |low main address

23 (high main address

24 |low base-page address

25 |high base-page address

26-27 not used

28 |checksum of words 0 - 27

sum of contents of

29 [setup code word «+—— words 1650 thru 1657
and words 1742 thru
30-127 not used 1764 in base page

Remainder of file is an exact copy of the program being saved.

Figure 2. Memory Image Program File Formats (Type 6)
PROS AND CONS

Users often store programs like EDITR and FMGR into type 6 files, Doing so enables the user to create multiple copies such as
FMGO01 and EDIO1, without having to create multiple load modules. We will expand on this subject later.

Since files do not disappear on boot-up, type 6's are useful for making load modules permanent. Furthermore, if you are short of
track pool area on your disc, type 6's effectively move your ioad modules out of the track pool into the FMGR area on LU’s 2 and
3. Of course, this is a trade-off; you may, in fact, be tight on FMGR area.

Another advantage of a type 6 over a load module in the track pool, is that it saves space. The on-line loader allocates space in
tracks, whereas the FMGR allocates file size in blocks. Consequently, a load module of, say, 127 words would waste 6017
words (one track minus 127 words) in the track pool, but only use one word as a type 6 file! (This excludes the 128 word 1D
block and the 16 word directory entry.)

On the other hand, a type 6 involves a minor inconvenience. It must be executed under FMGR or must be RP’ed, a command
we will discuss in the next section.

12

HOW TO USE THEM

Let's begin by loading a program with the on-line loader. Figure 3 shows you both a temporary and permanent load. The
temporary creates memory image code on disc, pointed to by an ID segment in memory. The permanent does the same but
also creates an ID segment on disc. For this example, assume we have a temporary load. Under a FMGR copy, do a
:SP.PROGX (Save Program command), where “PROGX” is the name of the program you loaded. The :SP causes a search to be
made of the ID segment table for.”PROGX", and results in the code and selected ID information for *"PROGX" being stored ina
type 6 file name “PROGX.” Now :OF, PROGX to eliminate the loaded version and you have the situation represented in figure 4.
(To eliminate a permanent program, you would RU,LOADR,,,4.) You should note that by default your file will be on LU's 2 or 3
and that only type 6 files on LU’s 2 or 3 can be executed. A :SP,PROGX::-12, for instance, would be good for nothing but
temporary storage. Under your FMGR copy you can now :RU,PROGX. Under FMGR, the “RUN’ command works as follows:
first, it initiates a search for an ID segment named PROGX; second, if no ID segment is found, FMGR looks for a type 6 file
named “PROGX"; third, FMGR will look for any file named “PROGX" and transfer to it. Hence, if there is no such program or file,
you end up with a FMGR -006 (file not found). In our example, having found a type 6, FMGR will locate an empty ID segment,
copy data into it from the first block of the file, and schedule the program. When PROGX terminates, the ID segment data will be
erased, making it available again. Because there_is no longer an ID segment, you could not exit FMGR and RU,PROGX.

If you want to run PROGX outside FMGR, you must :RP,PROGX (Restore Program) which creates an ID segment in memory
pointing to the file. On boot-up, you must :RP,PROGX again to reinstate the ID segment. When you start running out of 1D
segments, you can :RP,PROGX,PROGY, which will erase PROGY's ID and replace it by PROGX's. This assumes PROGY was
previously RP’ed. Figure 5 illustrates the above commands.

DISC

SYSTEM MEMORY
IMAGE

TRACK POOL

/V\ N
RU.[LOADR,|99 AN
*RU, |LOADR.99,9 »_ 10
SEGMENTS
PERM
LOADR b TEMP
BACKGROUND

Figure 3. Loading Program

13

CREATING COPIES OF PROGRAMS

If we want to create two copies of our load module, to be called PROG1 and PROG2, we do the foliowing -- :RN,PROGX,PROG 1
so that the name of ourtype 6 file is “PROG1,"” then :RP,PROG1. Now :RN,PROG1,PROG2 and :RP,PROGZ2, so that we have two
ID segments in memory, one for PROG1 and one for PROG2, both pointing to the same memory image code.

Under RTE-II/I, this technique is used to create copies of FMGR and EDITR. To insure that these copies exist after each
boot-up, the :RN's and :RP's would be done in the WELCOM file.

TYPE SIXING A SEGMENT

In the above discussion nothing was said about copying FMGR's segments: FMGRO, FMGR1, etc. Since each FMGR copy
loads the same segments, it suffices to have one version of these on disc; in this case the permanent version created at system
generation. If you decide, however, that you want to store some temporary segmented program into the FMGR area, you will

have to :SP the main and all its segments. How does the main find the segments when you say :RU,MAIN? Unfortunately, it
cannot, until you create pointers to the segments by :RP'ing them.

The preceding is a powerful tool when used with transfer files. In a procedure, for example, you can :RP your segments,
:RU,Main, and then :OF the segments, thereby releasing all the ID segments you used.

DISC

SYSTEM MEMORY
IMAGE

TRACK POOL

:SP.PROGX

MEMORY

Figure 4. Offing Program

14

DiSC

SYSTEM MEMORY
IMAGE

TRACK POOL

YHO

/ SEGMENTS
PERM
TEMP

PROGX
BACKGROUND

MEMORY

Figure 5. RPing Program

MISCELLANY

Here are several type 6 gotcha's. When you try to :PK,-2 or :PK,-3, you may get a FMGR -011 and alist of programs which have
been RP'ed. You have to :OF these programs before the :PK. RTE is afraid the RP'ed ID segments will end up pointing to the
wrong files and executing these could wipe out the system.

For the same reason, RTE only lets you run files on LU's 2 or 3, where they are least likely to be overwritten and cause havoc.
Furthermore, programs are loaded on one system could spell disaster on another, so RTE will not let you transport a type 6
between systems. Before it can be executed, a code word in the type 6 (see figure 2, word 29) must match a word in the master
cartridge directory on LU 2.

Finally, here are a few neat things you can do with type 6’s. Using our “PROGX" example, you could :SP,PROGX1, giving it a six
character file name, and effectively a six character program name when it is run under FMGR.

15

You could put two versions of the FTN4 compiler on your system, if you :SP the mains and associated segments with different

file names. Consider the two transfer files below:

/FTN4O (RESTORE OLD FTN4)
:RN,FTN40,FTN4
:RN,F4.00,F4.0
:RN,F4.10,F4.1
+RN,F4.20,F4.2
:RN,F4.30,F4.3
:RP,FTN4
:RP,F4.0
:RP,F4.1
:RP,F4.2
:RP,F4.3
:RN, FTN4 ,FTN40
:RN,F4.0,F4.00
:RN,F4.1,F4.10
:RN,F4.2,F4.20
:RN,F4.3,F4.30
: TR

And a similar transfer file

ID segment and tracks of each of the

How would you like to restrict the usage of certain programs? Just put them into type 6 files with security codes. For example, a

:SP,PROGX:-20 would require a :RU,PROGX:-20.

In summary, type 6 files may perplex the beginner, but they offer a novel way to store programs permanently on disc, create

would

/FTN4AN (RESTORE NEW FTN4)
:RN,FTN4N, FTN4
:RN,F4.0N,F4.0
:RN,F4.1N,F4.1
:RN,F4.2N,F4.2
:RN,F4.3N,F4.3
:RP,FTN4
:RP,F4.0
:RP,F4.1
:RP,F4.2
:RP,F4.3
:RP,F4.4

: RN, FTN4 ,FTN4N
:RN,F4.0,F4.0N
:RN,F4.1,F4.1N
:RN,F4.2,F4.2N
:RN,F4.3,F4.3N
: TR

be necessary to release the
modules.

copies of programs, rename them, put security codes on them, and much more.

16

DRIVER WRITING TIPS

John Pezzano, Captain, USAF
Halloman AFB, New Mexico

Here are some tips to use when writing drivers that could save some time in execution.

In order to make a driver reconfigurable and thus able to support more than one device of the same type, HP drivers configure
themselves every time they are entered. Is this really necessary? How many users have more than one card reader? If you are
writing your own driver, how many thigamayjigs are your going to communicate with? Even if the answer is more than one, what
are the chances that two of them will be active simultaneously? Probably not very high!

In the RTE Driver and Device Subroutines Manual (92200-93005), the recommended technique is to reconfigure the driver
immediately upon entering as follows:

I.XX NOP
JSB SETID Configuration
JMP I.XX, 1 Exit

SETIO NOP
- Do configuration
.'IMP SETI!0,1 Exit

€. XX NOP
JSB SETIO Configure
JMP C.XX,I

You can save the twenty to thirty configuration instructions with a little checking beforehand:

I.XX NOP
Cor C.XX) CPA SC Same select code as last time?
RSS Yes! Already configured.
JSB SETID No! Configure.
SETIO NOP Save select code for next time.
STA SC
SsC DEC 0 Initialize at O to force first time configuration.

17

You say you are also using DMA? Since there is at least a fifty-fifty chance that you will get the same DMA channel, you can
really save a bundle.

I.XX NOP
JSB SETIO Do checking in SETIO
SETIO NOP
CPA SC Need to reconfigure /O channel?
RSS Yes! Skip next instruction
JMP NOSET No! Skip configuration
Configuration Instructions
NOSET LDA CHAN Get assigned DMA channel
CPA DSC Same as last time?
JMP SETIO, I Yes! Exit. ‘
STA DSC Save for next time, reconfigure.
sC DEC

0
DSC DEC 0

Note that the driver is completely reconfigurable but under most circumstances, the configuration is skipped. The added few
instructions are more than compensated for by the time saved.

For the real purists, the initial configuration can also be skipped. If SC is initialized to a particular select code and the I/O
instructions are also set to that select code, then no configuration is necessary if the preselected select code is the one with
which the driver is called. If not, the driver reconfigures. This is particularly true of DMA configuration. Configure all DMA
instructions for select code 6 and initialize DSC as 6. If channel six is assigned, no configuration is necessary. If channel seven
is assigned, DSC does not compare as equal to CHAN and the driver reconfigures DMA.,

If you are writing a privileged driver and want to save time, there are more tricks you can use. The steps for the privileged
section of the driver is as follows:

1) P.XX NOP

2) Shut off interrupt, save registers, memory protect flag, prevent DMA interrupt,etc.
3) Do /O

4) Restore everything as before

5) JMP P.XX,I to exit

Here are some ways to save time:

1) In an 21MX computer, if you are not using the X or Y registers, don't save or restore them (four instructions saved).

2) If you can get away without using the B register, don't save or restore it (two more saved).

3) If you don't disturb the E or O registers (remember, ADA and ADB instructions set E and O), don't save or restore (eight
more!).

4) If you know there won't be any higher priority privileged drivers, leave the interrupt system off the entire time you are in the
driver. This saves turning it on and off once (two instructions) and eliminates the need to save and set the memory protect
flag. Who cares if it says memory protect is on when you have it off, nothing can interrupt anyway. Remember to check the
flag upon leaving the driver and turn on memory protect if it was on when you interrupted. (a few more instructions saved.)

These techniques are simple yet effective. They save time and time is money. The small cost in added instructions for the select
code check is more than compensated by the time saved. The elimination of unneeded instructions in a privileged driver can
add up to a real difference in system performance.

18

Computer
~“Museum

DESIGNING A DATA BASE FOR MODERN FACTORY MANAGEMENT

by John Koskinen

INTRODUCTION

Let's say that you are a systems analyst in a manufacturing organization and that your production managers are starting to
introduce the modern methods of plant management. It becomes obvious that the old manual inventory system or batch
computer work order system is completely inadequate to keep up with the demand for proper management information. It looks
like the best thing for you to propose is an on-line, data base management system to replace the manual or batch computer
systems. The problem that you have is, where to start.

THE PLACE TO START

Contrary to popular belief among some programmers, data base design starts with the people who use the information, not the
computer system that processes it. The first design step, then, is to observe and document the way people currently use
information in their respective departments. This is not hard to do. In manufacturing companies, virtually all plant activity can be
traced by paper forms or computer reports. This leads us to the tangible evidence for starting data base design — the source
document. Usually, the information you want to place into the data base is already on some kind of paper form or paper report.
The paper form may be a purchase order, inventory KARDEX card, material invoice ticket or QA inspection report. The paper
form or report is an excellent place to start because there is already a good deal of thought (intelligent design) placed in the
form in terms of data elements, data relationships, and data uses. As a data base designer, you have to translate that paper
form into an IMAGE schema. The translation process is not always a simple procedure, especially if the form is complex or is
used by a number of different departments. There is, however, a straight forward procedure for defining a data base schema
(data base definition language).

Using the paper forms or reports, make a list of all the data items (fields of information) on the form or report. The items always
have atitle: part number, P.O. number, quantity, date and so on. The data items always have a particular format: alphanumeric,
numeric only, dollars and cents, month-day-year, etc. The list of data items should include this format description. Once this list
is made, you can ask people in the department what data items are really used, which ones don’t need to be in the list, or which
additional data items should be included in the data base and hence on the item list.

The next step is to figure out the useful relationships between all the data items. An important observation here is how the

people in the department file the paper forms or access the reports. The paper forms may not always be filed in the same

sequence during the use cycle of the form. For example, a purchase order may start off in purchase order number sequence as
itis being typed up. Then, when the purchase order is sent to the vendor, a copy may be stored in another file by vendor name,

and another copy stored in a tickler file by due date.

The order in which the forms are stored tells you how the people in the department like to pull the forms out of the file. Many
computer generated reports are reprinted in a different sort sequence. The data item used to sort these forms or reports into a
sequence is called a key item. All paper forms have one key item which is unique to that piece of paper: purchase order
number, work order number, QA report number, etc. Once you have identified all the key items, you can ask the people in the
department what items on the form they use when they pull a copy of the form out of that particular file which has a particular key
sequence. For example, an inventory control clerk may want to see all the parts that have been ordered on a purchase order,
but doesn't really care about the vendor. On the other hand, a purchasing expeditor, noticing an order is late, first wants to know
who the vendor is and then what other orders that same vendor has. In this way, you can fit together a logical set of data items
which are most commonly used in various departments. At this point, those sets of items may relate to the original paper form
and they may not. What you have done, in data base terminology, is defined a group of items which could be put together to
create a data base record.

19

(PURCHASE ORDER}-ee. ==

R\ i

r Y
4982 rono e Suly /0 7B
o fagpleare S /z J
woness /024 5€C0 AZc
wwro M. View erffc
wooness 628 Llles st~ Me ew (o
ek Udysiisl ors . | M
Nz50| *8 screas, 42039123 3100 | B
1700 | R, Angle Bles, 120561 /8100 |6rss
4298-100) /00 |Ea.

5&77\@1/21/(3 Lo

| B0 | 6XT Flages,

1

|
i
|
f
|
I
|
|
I
1
|
|
|
|
|
|
f
|
|
|
I

WMPORTANT
OUR ORDER NUMBER MUST APPEAR ON | PLEASE SEND__Z ~ COPIES OF YOUR INVOICE

LALL INVOICES-PACKAGES, ETC.
PLEASE NOTIFY US IMMEDIATELY (F \S 7,,%
YOU ARE UNABLE TO SHIP COMPLETE MLEN
LORDER BY DATE SPECIFIED. PURCHASE AGENT)

01-E141C &))

20

STORAGE AND RETRIEVAL

The source document — paper form or printed report — has provided design information on data item definition; it can also
provide design information on input and output processing. Depending on user needs, data base operation may have to be

optimized especially for data input, or data retrieval. The design of the data base should incorporate these performance
preferences.

INPUT PROCESSING

Virtually all information in a production facility is found on a piece of paper at some time during its useful life. The odds are very
high that the information being placed into a data base as original information being placed into a data base as original
information is from a preprinted, manually filled-in paper form. The structure of the form can be used as a guide for designing
the various data base records, data sets, and relationships. For example, a purchase order (figure A) has two major types of
information: 1) header information which relates mainly to the vendor, order shipping, and terms and conditions; 2) line item
information which relates to part-numbers, line item descriptions, prices, and quantities. Obviously, it doesn’t make any sense
to duplicate the header data for each line item on the order. An optimal design for this purchase order might be one data set for
header information and one data set for line item information. The key used to connect these two data sets would be order
number. A sample schema is given in figure B. This schema is optimzed for input processing because it only has one key value
which is used for both the header and line item data sets. (The more key values associated with a data set, the more system
overhead is encountered in storing information into the data base.) An application program serving as the data base input
module probably would place a formatted screen on a purchasing clerk's CRT which looked just like the paper purchase order
in figure A. The clerk would fill in the blanks, press enter and the program (after doing necessary format, validation and range
checks) would create the data base records for that purchase order.

HEWLETT-PACKARD IMAGE/1000 DATA BASE DEFINITION PROCESSOR

$CONTROL LIST,NOROOT,NOSET,TABLE;
BEGIN DATA BASE PUR00;CR015;01;

LEVELS:

S CLERK;

10 SUPER;

1S MGR;

ITEMS:

0001 << HEADER INFORMATION »
0001 POHEAD, U4(5,15); <<PURCHASE ORDER NUMBER>>
0002 CDATE, U6(5,15); <«<PO CREATION DATE »
0003 VENNAM, U24(5,15); <<VENDOR NAME »
0004 VENADD, U24(5,15); <<VENDOR ADDRESS »
0005 SHPWHS, U24(5,15); <<SHIP TO WAREHOUSE »
0006 SHPADD, U24(S,15); <<WAREHDUSE ADDRESS »
0007 DEPCOD, UB(5,15); <<PURCHASED FOR DEPART >>
0008 RDATE, U6(5,15); <<CREQUIRED DATE »
0009 CARRY, U12¢5,15); <<SHIPPING CARRIER »
0010 TERMS, U12¢S5,15); <<SPECIAL TERMS »
0011 AGENT, U24(¢5,15); <<PURCHASING AGENT »
0012
0012 <<LINE ITEM INFORMATION >»
0012 POITEM, U4(5,15); <<PURCHASE ORDER NUMBER>>
0013 ITEMN, 11¢5,5); <<LINE ITEM ON QORDER »
0014 QTY, 11¢5,5); <CQUANTITY OF ITEM »
0015 PARTN, U16¢5,5); <<VENDOR PART-NUMBER »
0016 DESC, U16(5,5); <<DESCRIPTION >>
0017 PRICE, R2(5,5); <<EXPECTED PRICE »
0018 UNITM, U4¢5,5); <<UNIT OF MEASURE »
0019
0019 << KEY INFORMATION »
0019 POKEY, U4(5,15); <<PURCHASE ORDER KEY »
0020

21

SETS:
NAME: PURO1,A,CR015; <<P0 AUTOMATIC MASTER>>
ENTRY:

POKEY(2);
CAPACITY:1001;

NAME: PUR02,D,CR015; <<PO HEADER DETAIL SET>>
ENTRY :
POHEADCPURO1), <CHEADER KEY »
CDATE,
VENNAM,
VENADD,
SHPWHS ,
SHPADD,
DEPCOD,
RDATE,
CARRY,
TERMS,
AGENT;
CAPACITY: 1001;

NAME: PUR03,D,CR015; <<PD LINE ITEM DETAIL SET>>
ENTRY:
POITEM (PURO1), <<LINE ITEM KEY »
ITEMN,
aTyY,
PARTN,
DESC,
PRICE,
UNITM;
CAPACITY:5001;
END.

DATA SET NAME TYPE FLD CNT PATH CNT ENTR LGTH MED REC CAPAC CT CART NO.

PURO1 A 1 2 2 9 1001 CRO1S
PURO2 D 11 1 83 3 1001 'CR015S
PURO3 D 7 1 24 3 5001 CRO1S

NUMBER OF ERROR MESSAGES 0

ITEM NAME COUNT: 19

DATA SET COUNT: 3

ROOT LENGTH: 2 BLOCKS, 226 WORDS

CARTRIDGE REFERENCE NUMBER NUMBER OF BLOCKS REQ’D
CR01S 1815.

OUTPUT PROCESSING

In our example above, it may turn out that purchase order input is not as important as being able to access the purchase order
by various other organizations. Other organizaitons, however, probably may prefer to access the purchase order in another
way, perhaps by vendor or part-number. In this case the source document, the purchase order, may still be used as a starting
point for data base design, but additional information may have to be added to the data base to satisfy other departments’
needs., For example, a purchasing agent may have a series of vendors to keep track of. The agent would like to know what
orders the vendor currently has, but would like to keep track of other information such as delivery performance and total doliars
for the year. This points to the inclusion of a vendor data set in the data base. Another example might be that an inventory
control clerk needs to know what is on order for a certain part. If inventory is low on that part, it may be worth expediting the
order. Figure C gives an example of a modified IMAGE schema for handling these additional requirements. The additional
manual master for vendors ailows an application program to handle both vendor information and all the orders currently open to
that vendor. The additional manual master for part number allows an applications program to handle parts currently on order.

22

HEWLETT-PACKARD IMAGE/1000 DATA BASE DEF INITION PROCESSOR

$CONTROL LIST,NOROOT,NOSET,TABLE;
BEGIN DATA BASE PUROO;CR015;01;

LEVELS:
)
10
15

1TEMS :

0001
0001
0002
0003
0004
00004
0004
0005
0006
0007
0007
0007
0008
0008
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0018
0018
0019
0020
0021
0022
0023
0024
0028
SETS:

CLERK;
SUPER;

MGR ;

<< KEY
POKEY,
VENKEY,
PRTKEY,

INFORMATION

U4(5,15); <<PURCHASE ODRDER KEY
U24(5,15); <<VENDOR NAME KEY
U16(5,15); <<PART-NUMBER KEY

<< VENDOR INFORMATION

VENADD,
DELPER,
TOTDOL,

<< PART
PDESC,

U36¢5,15); <<VENDOR ADDRESS
U4(5,15); <<VENDOR DEL PERF CODE
R2(5,15); <<VENDOR TOTAL YR s

INFORMAT ION
U16(5,15); <<PART DESCRIPTION

<¢ HEADER INFORMATION

POHEAD,
CDATE,
VENNAM,
SHPWHS,
SHPADD,
DEPCOD,
RDATE,
CARRY,
TERMS,
AGENT,

<< LINE
POITEM,
ITEMN,
QTY,
PARTN,
DESC,
PRICE,
UNITM,

U4(S,15); <<PURCHASE ORDER NUMBER
ue(s,158); <<P0 CREATION DATE
U24(5,15); <<VENDOR NAME
U24(5,15); <<SHIP TD WAREHOUSE
U24¢5,15); <<WAREHODUSE ADDRESS
Ue(5,15); <<PURCHASE FOR DEPART
Ue(s5,15); <CREQUIRED DATE
U12¢5,15); <<SHIPPING CARRIER
U12(¢5,15); <<SPECIAL TERMS
U24¢5,15); <<PURCHASING AGENT

ITEM INFORMATION

U4(5,15); <<PURCHASE ORDER NUMBER
11¢5,5); <<LINE ITEM ON ORDER
11¢5,5); <CQUANTITY OF ITEM
U16€5,15); <<VENDOR PART-NUMBER
U16(s,5); <<DESCRIPTIDN

R2(5,5); <<EXPECTED PRICE
U4(5,5); <<UNIT OF MEASURE

NAME : PURO1,A,CR0O15; <<P0 AUTOMATIC MASTER >»>
ENTRY:
POKEY(2);
CAPACITY:1001;

NAME :

ENTRY:
VENKEY(1),
VENADD,
DELPER,
TOTDOL 5
CAPACITY:503;

PURO2,M,CR015; <<VENDOR MASTER FILE>>

23

>»
>
>
»

>»
>»
>
>>

>
>

>
>
>>
2>
>
>
>
>
>
»
>

>
>
>»
>»
>
>
>
>

ERATIONS MANAGEMENT

NAME: PUR03,M,CR015; <<PART-NUMBER MASTER FILE>>
ENTRY :

PRTKEY(1),

PDESC;
CAPACITY: 6001;

NAME: PURO04,D,CR015; <<PO HEADER DETAIL SET >
ENTRY:
PDHEAD(PURO01), <<HEADER KEY >
CDATE,
VENNAM(PURO2), << VENDOR KEY >)>
SHPWHS ,
SHPADD,
DEPCOD,
RDATE,
CARRY,
TERMS,
AGENT;
CAPACITY: 100%t;

NAME: PURO0S,D,CR015; <«<PO LINE ITEM DETAIL SET >
ENTRY:
POITEM(PURO1), <<LINE ITEM KEY >
ITEMN,
QTY,
PARTN(PURO3),
DESC,
PRICE,
UNITM;
CAPACITY:5001;

END.

DATA SET NAME TYPE FLD CNT PATH CNT ENTR LGTH MED REC CAPAC CT CART NO.

PURO1 A 1 2 2 S 1001 CRO1S
PURO2 M 4 1 34 6 503 CRO1S
PURO3 M 2 1 16 6 6001 CRO1S
PURO4 D 10 2 71 S 1001 CRO1S
PUROS D 7 2 24) 5001 CRO1S
NUMBER OF ERROR MESSAGES 0
ITEM NAME COUNT: 24
DATA SET COUNT: S
ROOT LENGTH: 3 BLOCKS, 296 WORDS
CARTRIDGE REFERENCE NUMBER NUMBER OF BLOCKS REQ‘D
CRO1S 3006.

CONCLUSION

The original source document, then, was used as a starting point to data base design. Further design information was added by
talking to people who use the form and the information on the form. While the final data base design may not resembie the
original paper form or repon, it is one of the best places to starn.

24

DEBUGGING IMAGE

By Todd Field

INTRODUCTION

This article is designed to help find IMAGE/1000 bugs. It concentrates on the type of problem that can be produced through a
known procedure rather than a problem which occurs at random. However, the process of defining the procedure itself is a
major step in the debugging process.

THE SYMPTOMS

e The data has been entered. The user runs QUERY to verify the data has been entered. A chained read (i.e., FIND keyval IS
“xxx' END;) fails to turn up the data. However, a serial read (ie FIND keyval ILT “yyy” AND keyval IGT “www" END;) turns it
up. Furthermore, this was a data item which was entered last week. This week’s entries all look ok.

¢ The chained read finds it alright, but the wrong entry is in the data record.
® Empty records are in the same chain with non-empty records.

e DBSPA shows a corrupt data base. This indicates that the free list count does not agree with the actual number of empty
records.

¢ Generally speaking, your pointers and chains are so mangled that it looks like every elephant ever owned by Barnum and
Bailey Circus sat on your 7920.

A data base is said to be corrupt whenever the data in it is not present in the correct form, is not in the correct location, or is not
linked together properly. The data is not linked properly if a forward or backward pointer from one data entry in a detail data set
does not point to the next entry in the chain, if a forward or backward pointer in a synonym chain in a master data set is
incorrect, if a pointer from an entry in a master data set does not point to a corresponding entry in a detail data set, or if the free
list (list of empty records) is incorrectly threaded. For an explanation of some of these terms, see Gary McCarney’s article, “An
Introduction to Data Base Management Terminology” in issue 16 of the Communicator/1000.

DETECTING THE PROBLEM

Assume you have a good data base (not exhibiting any sign of corruption as described above). If you are fortunate enough to
be present at a before=good, after=bad session, you have the problem licked. Grab the program that was running, a hard
copy of the data base and a list of the other programs running at the time and go directly to GO. Since you have the program
which is causing the data base corruption, you can tell, by examining it or with some help from your local HP Systems Engineer
(SE), where the data is going bad. However, in most cases, you will not be so lucky. Usually all you will get to see is the data
base after it has been corrupted.

After the problem has occurred several times, you should start to ask some of the following questions. They will not necessarily
give you all the information you need to solve the problem, but hopefully, you will be able to locate areas of further exploration
from the answers.

® Revision code? Be sure that you are working the the most recent revision of RTE and of IMAGE/1000.

® Are there any known IMAGE problems? Check the Software Status Bulletins (SSB) for reported IMAGE bugs.

e When did you last know the data base was good? This may not be obvious, as the last several times the user accessed the
data base the offending records may not have been accessed.

25

® In what mode was the data base open? If it was mode 1 open, you should look elsewhere for the problem.
® What eise was going on in the system at the time?

® How many programs access the data base at one time? Does the problem re-occur if only one program has the data base
open?

e [f mode 2 open, what else in your system uses System Available Memory (SAM)?

e Do the programs perform bounds checks on all array references? Nothing causes problems like zeroing out the rest of the
partition.

e Did the program terminate abnormally in any way? This includes an operator "OFing” the program.

® What kind of error checking do the programs do? How do they terminate. Have the programs ever been aborted or
terminated incorrectly? A frequent cause of IMAGE problems is in improperly terminating programs.

AVOIDING THE PROBLEM

The most obvious cause of IMAGE problems is a program terminating without closing the data base properly. If the program is
open in mode 3 and terminates after doing DBPUT's or DBDEL 's without closing the data base, all bets are off and you deserve
whatever you get. Mode 2 is not as bad, but a little effort needs to be put forth to save the data base.

The reason an improper mode 3 termination is so disastrous is not difficult to understand. In mode 3, the run table is stored in
the partition with the program. The run table is a copy of the root file which contains information such as set and item names,
path descriptions and set names. It also contains more volatile information, such as access mode and current position in
chains. Also stored in the partition are the Data Control Blocks (DCBs) for the various data sets. DBPUTs and DBDELs alter the
run table and these DCBs, but the data in the DCBs are not written to the data set until more data is needed from the data set
(chain maintenance is an example) or untit a DBCLS is done. DBCLS is the only method to post the run table to the root file.
Thus, if the program abnormally terminates, the run table will be lost (affecting free list pointers) and the data in the DCB’s will
be lost (probably affecting chain pointers).

Mode 2 handles the run table and the DCBs in a different fashion. As well as being stored in the partition, the free record
pointers for each data set are written into SAM through class 1/O, 1o be shared by all other mode 2 programs now using this data
base. The DCBs are still stored in the partition. The other difference is that the data inthe DCBs is posted and an updated run
table is written to SAM after each DBUNL call. Thus, if the program abnormally terminates after a DBUNL, the data in the data
sets will be correct but the free record information will still be in SAM where it can be posted using RECOV. If DBUNL has not
been called, the results are the same as in a mode 3 open. Correct program termination cannot be overemphasized.
Some things to avoid are:

e Allowing your operators to abort IMAGE programs. In the worst case, they can suspend the program.

® Reporting an error and PAUSEIng. (Does your operator know how to use the GO command?)

e Infinite loops in error routines. Always leave a way out of an input cycle. For example, if /A is entered, jump to a routine to
terminate processing in an orderly fashion.

e Do not write all over computer memory. IMAGE use the area between the end of your program and the end of your partition
to work in. Accidentally zeroing out one of IMAGE's DCBs is a fast way to corrupt any file.

® Do not alter the media record. The media record consists of the first several words of each record, before the user data.
This data contains chain linking information.

26

Some things to do are:

® Check the error return parameter from IMAGE subroutine calls, |ERR, after every data base access. If you get an error on
any subroutine, report it and take some action. If an error develops, it falls into one of three categories.

a. ltem not present in an interactive program. Prompt for the item again and check for an “abort” answer. Consider
closing the data base while waiting for more input.

b. Hard error (i.e,, DBPUT fail). Jump immediately to an error ending routine.
¢. Non-IMAGE error (user file read error, etc.). Treat these error as you would treat a. or b. above.
® Use the "no abort” bit on all EXEC calls.

If you think that abnormal program termination may be your problem and you are now using a mode 3 open, consider using a
mode 2 open. If youwant to, try calling DBLCK/DBULK as often as possible. Now only your free record information will be leftin
memory if the program is abnormally terminated, and RECOV may be able to post this to the root file. RECOV can recover the
run table even if the data base was locked when the program terminated. This is possible because the resource number
associated with the lock was acquired globally (meaning that anyone can release it) and locked locally (meaning that it is
unlocked automatically upon program termination). This is not a foolproof method to solve the problem, but it may give you
enough breathing room to work in.

RECOVERING FROM THE PROBLEM

At some point your data base may contain bad or corrupt data and need to be reloaded or otherwise fixed. This is almost
always a time consuming process. As this article is geared toward frequently occuring problems, a short discussion of various
recovery techniques is in order.

RECOV is an HP supplied utility that retrieves the run table from SAM and posts it to the root file. If you had the data base open

in mode 2 and if you had locked/uniocked the data base recently, RECOV may be able to restore all your data. Run DBSPA

immediately after RECOV to be sure the free list count is the same. Remember though, DBSPA can run successfully and you
could still have a corrupt data base. The IMAGE/1000 manua! (92063-90001) discusses RECQOV in more detalil.

Even if your chains are bad, the data in your data base may still be good. The reason for this is that IMAGE uses a fixed
precedence when it updates a record. IMAGE updates, in order

The root file (kept in memory for the duration of each program)
Master set chains

Detail set chains

Detall records

Thus, it is possible (probable) that the root file, the last detail record and the last chain maintenance in each set will be lost if the
program abnormally terminates. If a large amount of data has been entered, it may be acceptable to lose this data rather than
reenter all data since the last backup tape.

if you have entered a large amount of data since your last backup and your pointers are badly fouled up, dumping and
reloading the data base using DBULD and DBLOD will allow you to recover most of the data. DBULD reads the data base
serially and records the user data, but not the media record, on the tape. Thus, DBLOD will create a good data base evenif the
original data base was corrupt. Unfortunately, this may take a long time. See the IMAGE/1000 manual for more detail.

DBULD and DBLOD ailow the user the option of redefining the data base schema. Consider writing your own program 1o
perform the same function as DBULD and DBLOD, but without the option of redefining the schema. A user-written program to
execute one specific function will run faster than general purpose programs such as DBULD and DBLOD.

27

TRACKING DOWN THE PROBLEM

After you have observed a corrupt data base, you still have to track the problem down. Below are several tools to help you do
this.

WALKING THROUGH CHAINS

The easiest way to really prove that a data base is corrupt and to understand where and why it is corrupt is to walk through the
data sets manually. To do this you need to know:

1. What you are looking at
2. What you are looking for
3. How you look for it

What you are looking at:

Each record in the data set contains not only the user data, but also the media record containing the chain pointers and an
empty/occupied flag. The format is different for master and detail data sets. Both master and detail data sets are FMP files with
the file name the same as the data set name and the security code the negative of the data base security code. Note that only
the first and last paths are listed below. The other paths have the same format. Figures 1 and 2 show the formats for records in
master and detail data sets.

What you are looking for:

For any suspicious record in the data base, find the record and follow its synonyms, forward and backward pointers and links to
other data sets until you find something suspicious, such as pointing to a free record, synonyms incorrect, forward and
backward pointers not matching or any other peculiar looking circumstance. If you find something, try to decide how or why it
was corrupted. Is it in another record's chain? Was chain maintenance being done for a new or deleted record in the chain?
When were the adjacent records added or deleted? This kind of debugging is no different than any other kind; it takes practice.

How to look for it:

The easiest way to follow a chain is to dump out the entire data base in octal. This is fine if you have a rather small data base, but
for any practical application, it would take guite a bit of paper. A little known fact is that FMGR's List command can be used to
print out individual records in a file. To do this try

LI filename:-sc:crn,B, [starting record] (ending record]

Although this will only list out the first 128 words of the record, this can be very useful. The media record is contained in the first
several words of the record, and the remainder of the 128 words will usually give you enough information to follow any chains in
this file.

A good way to find a starting point is to use QUERY to find a suspect record and list out the select file in octal. Each entry in the
select file (up to the number of records found) is the relative record number of an entry in a data set. Remember to convert
binary to decimal in the appropriate places. (FMGR can do this for you. Simply enter numbers in FMGR commands followed by
B to convert the number from octal. For example, 17 octal should be entered as 178B.)

28

ERATIONS MANAGEMEN

wrdl wrd2 wrd3 wrd4 wrd5 wrd6 wrd16 wrdl7 wrdl8 wrd19-wrdn
T T T T T.
occ synonyn path 1 information path 5 information user
ind pointer data
chn chn chn chn chn chn
back fwrd Inth foot head Inth foot head

O=empt O=none O=none O=none
1=prim
—1=syn

Occ ind is the occupational indicator (non-zero if there is anything in this record).

Figure 1. Master Data Set Record

wrdl wrd2 wrd3 wrd10 wrdll wrd12-wrdn
T T
occ path 1 pointer path 5 pointer user
ind data
back fwrd back fwrd
O=empty (next
1=occ empty
record)

Figure 2. Detail Data Set Record

THE ROOT FILE

If DBSPA shows a discrepancy between the number of empty records in the data base and the number of empty records that
IMAGE think are in the data base, it is likely that your root file has been corrupted. Figures 3 through 8 show the format of the
root file and related entries. Note that the record length of the root file is greater than 128 words, so you will be unable to use the
FMGR DU or LI commands to interrogate the root file. Note that entries marked with asterisks (**) are filled into the run table at
run time. The root file is named after the data base name and is located on the disc cartridge specified in the schema. Its
security code is also the negative of the data base security code. Figure 3 shows the format of the root file, figure 4 the item
table entries, and figure 5, the set table entries.

29

WORD

53

54

55

WORD

ROOT FILE

(RUN TABLE)

L

“g

DATA BASE SECURITY CODE

DATA ITEM COUNT

DATA SET COUNT

POINTER TO DATA ITEM TABLE

POINTER TO DATA SET TABLE

LEVEL

MODE

LEVEL

ONE

WORD

LEVEL

FIFTEEN

WORD

ITEM TABLE ENTRIES

(ONE ENTRY PER ITEM)

SET TABLE ENTRIES

(ONE ENTRY PER SET)

Figure 3. Root File Format

ITEM TABLE ENTRIES

DATA
ITEM
- NAME T
READ LEVEL WRITE LEVEL
ITEM TYPE DATA SET #

Figure 4. ltem Table Format

30

Ak

typeis I, Ror U

WORD SET TABLE ENTRIES

1 0 T DATA SET TYPE type is D. Mor A
2 MEDIA RECORD LENGTH
3 ENTRY LENGTH
4 ITEM COUNT PATH COUNT
5 SEARCH ITEM # PATH # ** changes only in
detail
6 POINTER TO PATH TABLE
7 FREE RECORD COUNT
8 FIRST FREE RECORD ** always O for
master
9 LAST ACCESSED RECORD # **
10 PATH LENGTH OF CURRENT CHAIN w*
11 RECORD # OF CURRENT CHAIN FOOT o
12 NEXT RECORD # IN CHAIN wx
i3 DATA
14 T SET NAME T
(K] T CARTRIDGE #
16 CAPACITY
RECORD DEFINITION ENTRIES
(ONE PER ITEM)
PATH TABLE ENTRIES
(ONE PER PATH)

Figure 5. Set Table Format

WORD RECORD DEFINITION ENTRIES

I ITEM # RiW LENGTH (W)

Figure 6. Record Definition Entry Format

WORD PATH TABLE ENTRIES (MASTER)
refers to
1 SEARCH ITEM # DATA SET # related detail.
2 PATH # SCRATCH SCRATCH flag is
set to delete,

update or add item
when a DBPUT or
DBDEL is done to
the related detail.

Figure 7. Master Path Table Entry Format

WORD PATH TABLE ENTRIES (DETAIL)
INDEX of items
! SRCH ITM INDEX DATA SET # in this set.
2 PATH # SCRATCH # refers to

related master.

Figure 8. Detail Path Table Entry Format
31

ERATIONS MANAGEMENT

TRACE: DECIMAL TO OCTAL AND HASHING ROUTINE

As an assist in trying to follow chain pointers and hash key values, appendix 1 contains the listing of a simple FORTRAN
program, TRACE. TRACE asks you for a value in decimal or octal and prints it out in octal and decimal. if you enter a value of H,
TRACE will prompt you for a key to a master data set and information about the key (integer or ASCII, etc.) TRACE will then call
the hashing function of IMAGE directly and print out the hashed value modulo the number of entries in the data set. For a further
description of hashing, please read Gary McCarney’s article mentioned above.

CONCLUSION

One certainly hopes that one will not need to delve into a data base in as much detail as is presented here. The same tools and
techniques, however, can be used for other purposes. Application program debugging and fine tuning an application can be
difficult without a detailed knowledge of the internal workings of the system being worked with. | hope that this article will enable
you not only to track down possible system bugs, but also to form a better fit between your applications and HP/1000 systems.

APPENDIX 1: TRACE ROUTINE LISTING

10
20

30

OO0

OO0

40

41

PROGRAM TO DD OCTAL/DECIMAL CONVERSION DR HASH AN IMAGE KEY VALUE
WRITTEN BY: TODD FIELD MARCH, 1978
PROGRAM TRACE

INTEGER IPARM(S), IBUF1(33),1BUF2(33)
EQUIVALENCE (RBUF ,IBUF1(1))

CALL RMPARCIPARM)
IF CIPARM(1).EQ.0) IPARM(1)=1

START LOOP

WRITE C(IPARM(1),20)

FORMATC/" INPUT A DEC OR OCT NUMBER (0 TO STOP H TO HASH) ? _'™)
READC IPARM(1),30) (IBUF1(I),[=1,33)

FORMAT(33A2)

IBUF1(33)=2H,

ICCNT=33

CALL PARSE(IBUF1,ICCNT,IBUF2)

DECIDE WHETHER TO HASH OR NOT
IF (IBUF2(1).EQ.1) GOTO 100
HASH

WRITE C(IPARM(1),40)

FORMATC/* MODE €0=ASCII, 1=INT, 2=REAL) ? _")
READ (IPARM(1),+) IMODE

WRITE CIPARM(1),41)

FORMAT(*™ VALUE 2 _™)

GOTO ¢50,60,70) IMODE+1

32

C
c
c

OO0

OO0

OO0

S0
55

56

€60

70

80

85

90

100

108
110

ASCII

READ CIPARM(1),55) C(IBUF1(¢I),1=1,33)
FORMAT(33A2)
WRITE CIPARM(1),56)

FORMAT("™ NUMBER OF CHARACTERS TO HASH ? _

READ CIPARM(1),+) ILEN
GOTO 80

INTEGER

READ C(IPARM(1),#) [IBUF1(1)
TLEN=1

GOTO 80

REAL

READ (IPARM(1),+) RBUF
ILEN=2

HASH
CALL HASHCIBUF?,ILEN)

CALL ABREGCIPTR, IBDUM)
WRITE CIPARM(1),85)

FORMAT(* NUMBER OF ITEMS IN THE DATA SET ? _

READ CIPARM(C1),#) ITEMS
IPTR=IPTR+1

IF CIPTR.GT.ITEMS) IPTR=IPTR-ITEMS
IF CIPTR.GT.ITEMS) GOTQ 90

G0TO 105

SIMPLE INPUT

IPTR=IBUF2(2)

OUTPUT VALUE

WRITE CIPARM(1),110) IPTR,IPTR
FORMAT(" DECIMAL: *,I6," OCTAL :

IF CIPTR.NE.O) GOTC 10
END

33

",K6)

BIT BUCKET

g'oftwa e (L~
amantna <.

Samantha hasn't received any questions from readers this month. However, in going through the papers on her desk, she found
the following.

"Dear Samantha,
I'm confused. When should | be using a DBCLS mode 1 (post mode) and where should | put it?

Sincerely,
Ima L. Ostchain”

Dear L. Ostchain,

DBCLS in post mode should be used when you have the data base open in mode 2 (shared read/write access), you have

locked the data base, done a DBPUT or a DBDEL, you are about to unlock the data base and you want an additional leve! of

security protecting you from a system crash. DBCLS in post mode simply takes the free list pointers which IMAGE stores in
System Available Memory and posts them to the disc. The correct calling sequence should be:

c PROCESSING
CALL DBINT(IBASE,ISCOD,ILIST,ISTAT)
IFCISTAT.NE.0)GO TO 9000
CALL DBOPN(IBASE,ILEVL,I1SCOD,IMODE,ISTAT)
IFCISTAT.NE.0)GO TO 9000

c PROCESSING
CALL DBPUTCIDSET,ISTAT,INBR,IVALU, IBUF)
c 1]

CALL DBDELCIDSET,ISTAT)

IFCISTAT.NE.0)GO TO 9000
c PROCESSING

CALL DBCLS(1,ISTAT)

IFCISTAT.NE.0)GO TO 9000

CALL DBULK(ISTAT)

IFCISTAT.NE.O0)GO TO 9000

34

BIT BUCKET

c PROCESSING

P WRITEC(LOGLU,8999)

8999 FORMAT(“SUCCESSFUL TERMINATION!*)
GO TO 9500

9000 CONTINUE
WRITECLOGLU,9001)ISTAT
9001 FORMAT("UNSUCCESSFUL TERMINATION!*)
CALL DBULKCISTAT)
9500 CALL DBCLS(O0,ISTAT)
IFCISTAT.EQ.0)GO TO 9999
WRITECLOGLU,9501)ISTAT
9501 FORMAT("UNSUCCESSFUL DBCLS!!! ISTAT IS: ",16)
9999 CONTINUE
END

For more information on free list pointers, SAM and what happens when an IMAGE data base is open in mode 2, read the article
“Debugging IMAGE” in this issue of the COMMUNICATOR.

Do you do a lot of tangent calculations? Then Larry B. Smith of Hewlett-Packard in Albuguergue has a tip for you.

“Here's a suggestion for those of you that calculate trigonometric functions in your RTE system. The TAN subroutine in the RTE
Relocatable Library is used to calculate the tangent of a real X, where X is in radians, i.e.,

Y=TANCX)

Did you know that it's faster to calculate the tangent of an angle this way?

Y=SINCX)/COSCX)

Although this method seems slower because RTE calls the SIN subroutine, then the COS subroutine, and then divides the two

answers to get the final result, it's actually much faster. it's not unusual to achieve 40-60% speed improvement using this
method.

If you are using the TAN subroutine and speed is critical to your application, try this suggestion.

It's also worth noting that because we don't have a double precision tangent subroutine in the RTE library, this method works
fine using DSIN and DCOS subroutines, i.e.,

DOUBLE PRECISION X,Y
Y=0.2
X=DSINCY)/DCOSCY)

Try it, you'll like it.

Regards,
Larry B. Smith”

Software Samantha is here to answer your questions about HP1000 software. If you have any problems, questions, points that

need clarification, Samantha is glad to help. All letters will be answered, whether or not they are printed in the COM-
MUNICATOR. Address your letters to

SOFTWARE SAMANTHA

c/o Editor, COMMUNICATOR
Hewlett Packard Data Systems
11000 Wolfe Road

Cupertino, California 95014

35

NEW FEATURES ARE ADDED TO BASIC/1000D

by Van Diehl

Several new important features have been added to BASIC/1000D (92101A). The most important is the addition of formatted
output capability, via the PRINT USING statement.

Formatted output, with PRINT USING, gives you a simple way to generate reports, as shown in the example below.

PRINT USING statement specifies the format that the variables specified in the statement are to be printed. This format can be
in a literal string, in a string variable, or in a special statement called the IMAGE statement. In contrast, the standard PRINT
statement does not allow the specification of a format.

With PRINT USING the user has explicit and exact control over the format of the program output:

e Numbers can be printed in three different representations: integers, fixed point and floating point.

® The exact position of plus and minus sign can be specified

e String values can be printed in specified fields and literal strings and blanks can be inserted wherever needed.
e Full control over carriage returns and line feeds is possible.

® Arbitrary long lines can be printed without the carriage returns and line feeds normally provided by the PRINT statement.

Another important addition to BASIC/1000D is the INVOKE statement. The INVOKE statement complements the CHAIN
statement. The INVOKE statement is used to schedule a second BASIC program from a calling program. The cailed program
may also call another program and so on. When the current executing, called program, terminates, control is returned to the
calling BASIC program. BASIC data files remain open when one program INVOKEs another and any TRAPs previously enabled

will remain enabled.

The CHAIN statement instead terminates the current executing program and begins execution of another program. No files are
left open or TRAPs enabled.

These features now complement the extensive set that is provided by BASIC/1000D, such as:

e Multi-user Operation

e Disc file access for programs and data

e BASIC/1000D can call FORTRAN, ASSEMBLER or microassembler coded subroutines.

e Commands for tracing, setting breakpoints and simulating subroutine calls to non-implemented éubroutines

e Character string variables

e CHAIN and INVOKE statements to implement larger programs (larger than the 1500 statements (balipark number) that can
be loaded in a RTE-IV partition).

e FORMATTED OUTPUT with PRINT USING

e Interface call to IMAGE/1000
e Decimal string arithmetic

e Instrumentation interface
e Time scheduling of BASIC tasks via START and TRNON statements
e Event scheduling of BASIC tasks via TRAP statement

e Bit manipulation statements for setting, clearing, shifting and performing boolean arithmetic

e Interface to GRAPHICS/1000, allowing easy access to the 2648 graphics terminal, 7245 plotter-printer, and 9872 graphics

lotter
P 36

HOW DO CUSTOMERS GET THE NEW ENHANCED BASIC/1000D?

BIT BUCKET

All subscribers of the Comprehensive Software Support and Software Subscription Service will be (or have been already)
updated, with the revision 1826 of the BASIC/1000D software. Customers that do not subscribe to these services can get the
enhanced version of BASIC by purchasing the 92101A product. See your local Hewlett- Packard sales representative for more

infor

mation.

REPORT GENERATION EXAMPLE

This program is a sample report generator. It first requests a school number from the terminal, then reads and prints out
information about the school's teachers from a file. Note that a carriage control character is used to advantage (statement 100),
slashes (/) are used (statement 200) string and fixed-point fields are used (statement 210), and an error occurs in the output for
the eighth teacher (number too large for field; therefore, it is printed in E format on a separate line).

10 REM THIS PROGRAM GENERATES A REPORT ON TEACHERS

S0

60

100
150
17§
200
210
230
250
260
270
500
5§50
§S85
5§57
560
600
620
100

ENT

DIM A$(25),B$(19),Cs(19)
FILES SCH1,SHC3,SHC3,SCH4,SCHS
IMAGE #,"ENTER SCHDOL NUMBER:"

IMAGE "TEACHER™,13X,"SUBJECT'",13X,"SALARY",4X,"ATTND."

IMAGE *------- "3, e "L 13K,
IMAGE "CENTRAL CITY SCHOOL DISTRICT"/“DAILY

IMAGE 20A,20A,"s$",DDD.DD,DD.DDDD
PRINT USING 100

INPUT 2

READ #2Z;As,N

PRINT

PRINT USING 200;A$

PRINT USING 150

PRINT USING 175

FOR A1=1 TO N

READ 2;Bs,Cs,A,B

PRINT USING 210;Bs,Cs,A,TAB(S0),B
NEXT A1
0 END

ER SCHOOL NUMBER: ?1

CENTRAL CITY SCHOOL DISTRICT

DAILY REPORT OF B. BAKER HIGH SCHOOL
TEACHER SUBJECT
MISS BROOKS ENGLISH
MISS CRABTREE REM. READING
MISS GRUNDIE HISTORY
MRS. HUMPREY SPELLING
COLONEL MUSTARD CRIMINOLOGY
MISS PEACH LIFE PREPARATION
PROF. PLUM AGRICULTURE

MISS H. PRYNNE

SOCIAL STUDIES
+5.00500E+02

MISS SCARLETT P.E.
MR.SIR HOME ROOM
MR. T. TIM MUSIC
MR. WEATHERBY ECONOMICS

37

SALARY

$45S0.
$400.
$350.
$700.
$700.
s$232.

$777.
$100.

$205.
$890.
s 10.
$767.

10
00
29
29

ATTND.

12.5000
64.3200
1.0010

99.9900
21.4500
23.2320

65.0050

25.0000
99.9000
0.0500

10.0400

RTE-II/ll to RTE-IV UPGRADE COURSE AVAILABLE

If you are one of the many customers who are planning to upgrade your existing RTE-ll or RTE-I1l Operating System installation
to the new RTE-IV Operating System, take note: A two day RTE-/i/lll to RTE-IV Upgrade Course is available. This course, which
assumes a thorough knowledge of RTE-I/IIl as a prerequisite, will provide you with detailed information on all of the new
features of RTE-IV. Class time is divided between lecture material which explains the new features, and hands-on lab time with
the RTE-IV Operating System. Also supplied is a complete set of new manuals, such as the RTE-IV Programming and
Reference Manual and the RTE-IV Generation Manual. Course fee is $250.00 in the United States. Contact your local HP
representative for a course data sheet and the current schedule of classes.

SETTING UP A TRAINING PROGRAM

We encourage you to discuss your training requirements with your local HP representative. This person is trained to assist you
in setting up an optimum training plan for your needs. However, the following comments about the HP 1000 Computer Systems
training program may heip you to prepare in advance for this discussion.

In general, courses should be taken in the sequence indicated in the training program diagram on the next page, starting from

the left, and proceeding toward the right. Completion of each course in sequence will ensure that all needed prerequisites are
satisfied.

If you have not had any previous experience with minicomputer systems, you should start your training with the four day
Introduction to HP Minicomputers course. Otherwise, you can skip this course, and begin your training with either the HP 1000
Disc-Based or Memory-Based RTE Operating System course. Which one you choose will depend upon the type of system in
your installation. Note however, that both of these courses require a thorough knowiedge of FORTRAN programming as a
prerequisite.

All HP 1000 Computer System users should plan to take one of the Operating Systems Courses described above. Further
training is optional, depending upon the nature of your programming tasks. For example, if you are planning to:

¢ Design a data base using the IMAGE/1000 software. . .
You should take the IMAGE/1000 Data Base Management course (22977A).

e Connect instruments to your HP 1000 via the HP-1B. . .
You should take the HP-IB in a Minicomputer Environment course (22980C).

e Operate your system as part of a distributed systems (DS/1000) network. . .
You should take the DS/1000 User's course (22987A). Furthermore, if you are to be designated as the Network Manager for
your DS/1000 network, you should follow this course with the Theory of Operation of DS/1000 course (22961B). And if your
network will include an HP 3000 system, you should continue your training and take the one day Theory of Operation for
DS/1000 to HP 3000 course (22962B).

e Write programs in HP Assembly Language. . .
You should take the HP 1000 Assembler Programming course (22952B). (Note that this course is a prerequisite for the
Driver Writing and Microprogramming courses mentioned below.)

e Interface your own peripheral equipment to your HP 1000 system. . .
You should take the HP 1000 Driver Writing course (22990A) to learn how to write device drivers for your own peripherals.

e Customize your computer for your application using the Microprogramming feature of the HP 1000. . .
You should take the HP 1000 E/F Series Computers Microprogramming course (22983B).

e Write test programs for your HP-ATS system. . .
You should take the HP-ATS Test Programming course (92780A).

38

SUMMARY

After reviewing the new customer training program discussed in this section, choose a tentative training plan that satisfies your
needs. Then discuss your plan with your local HP representative. This person can assist you with your course selection, provide
you with the latest course schedule, and register you in the appropriate courses at the nearest customer training center.

See you in class!

NOTE: COURSES MUST BE TAKEN
IN LEFT TO RIGHT SEQUENCE
TO ENSURE ALL NEEDED
PREREQUISITES ARE MET.

HP-1000 DISC-
BASED RTE
SYSTEM
COURSE
(22991A)
INTRODUCTION
TO HP
MINICOMPUTERS
(229518)
HP-1000 MEMORY-
. BASED RTE
SYSTEM COURSE
FORTRAN (22992A)
PROGRAMMING
EXPERIENCE

HEWLETT-PACKARD
CUSTOMER TRAINING PROGRAM
FOR HP 1000 COMPUTER SYSTEMS

HP-ATS TEST

PROGRAMMING

COURSE

(92780A)

IMAGE/1000

DATA BASE

MANAGEMENT

COURSE

(22977A)

DS/1000 THEORY OF THEORY OF

USER’S OPERATION OPERATION FOR

COURSE OF DS/1000 . 3?;323 To
B

(22987A) (22961B) e

HP-1000 HP-1000 E/F-SERIES

ASSEMBLY COMPUTERS MICRO-

PROGRAMMING PROGRAMMING

COURSE COURSE

(22952B) (22983A)

HP-IB IN A

MINICOMPUTER
ENVIRONMENT
(22980B)

HP 1000 DRIVER
WRITING COURSE
(22990A)

BULLETINS

NEW COURSES

In the last issue of the COMMUNICATOR 1000, the new training program for HP 1000 computer systems was discussed. The
introduction of this new program coincided with the introduction of the new RTE-1V operating system and the new HP 1000
F-series computers. A schedule for most of these courses is now available and is given later in this section. A brief description
of each of the new and revised courses is given below. For more detailed information, refer to the data sheet for each course or
contact your local HP representative.

22951B INTRODUCTION TO HP MINICOMPUTERS

Description: This course provides an entry point into HP computer training for those customers who have had no previous
experience with minicomputer systems. Upon completion of the course, the student will be familiar with the concepts of:

1. HP minicomputer architecture.
2. Operating systems.

3. High level languages.

Length: 4 days

Lab: Provides a hands-on introduction to the hardware and software operation of HP 1000 minicomputers. This includes
operation of the computer front panel, system boot-up procedures and on-line loading and execution of programs.

Prerequisites: None. Students may be either hardware or software oriented.

22991A HP 1000 DISC-BASED RTE SYSTEM

Description: This course covers the operation of the RTE-IV operating system in an HP 1000 system environment. This
includes program preparation using standard compiler, assembler,editor, and loader; disc usage; system software generation;
and use of the Batch-Spool Monitor (BSM), including the file manager. HP 1000 software support policies are also briefly
discussed.

Length: 10 days

Lab: Provides hands-on experience in operating, programming, and generating the RTE-IV system, including BSM.

Prerequisites: Demonstrated proficiency in FORTRAN programming (such as completion of a FORTRAN programming
course) and completion of the Introduction to HP Minicomputers course (22951B) or equivalent minicomputer experience.

40

BULLETINS

Computer

Museum

REVISED COURSES

22980C HP-IB IN A MINICOMPUTER ENVIRONMENT

Nature of Changes: The material in the HP-IB course has been expanded to include programming information on the twelve
new HP-IB message subroutines and information on how to write device subroutines for specific HP-IB devices. Device
subroutines can simplify the use of HP-IB devices by programs by providing an easy-to-use software interface tailored to each
device.

Description: This course provides an introduction to HP-IB concepts and theory as they apply to use in HP 1000 Computer
System controlled measurement systems as well as training in the programming of HP-IB on an RTE system. information on how
to write device subroutines is also included.

Length: 4 days

Lab: Provides hands-on experience with a typical HP 1000 computer controlled HP-IB instrument system.

Prerequisite: Completion of either the HP 1000 Disc-Based RTE System course (22991A) or the HP 1000 Memory-Based RTE
System course (22932A) or equivalent RTE experience.

22983B HP 1000 E/F-SERIES COMPUTERS MICROPROGRAMMING

Nature of change: This course has been improved and updated to include microprogramming information related to the
recently introduced HP 1000 F-series computers. Information on E-series microprogramming is also included.

Description: This course covers the theory and use of HP microprogramming hardware and software to prepare, alter, and
install microprograms for HP 1000 E- and F-series computers.

Length: 5 days
Lab: Provides hands-on experience with preparation and installation of microprograms.

Prerequisites: Completion of either the HP 1000 Disc-Based RTE System course (22991A) or the HP 1000 Memory-Based RTE

System course (22992A) and the HP 1000 Assembler Programming course (22952B) or equivalent RTE and assembly
language experience.

1

TRAINING SCHEDULE

The current schedule for customer training courses on HP 1000 computer systems products is given in this section. included
are courses offered both in U.S. and in Europe during the upcoming months.

You can also obtain a copy of the training schedule from your local HP sales office. A European course schedule is available
through the sales offices in Europe; a U.S. schedule through U.S. sales offices.

*Prices quoted are for courses at the U.S. training centers only. For prices of courses at European training centers please
consult your local HP sales office.

DATA SHEETS

Data sheets giving detailed information on each of the courses scheduled are available from your local HP representative.

REGISTRATION
Requests for enroliment in any of the above courses should be made through your local HP representative. That person will
supply the Training Registrar at the appropriate location with the course number, dates, and requested motel reservations.

Enrollments are acknowledged by a written confirmation indicating the training course, time of class, location and accommoda-
tions reserved.

ACCOMMODATIONS

Students provide their own transportation meals and lodging. The Training Registrar will be pleased to assist in securing motel
reservations at the time of registration.

CANCELLATIONS

In the event you are unable to attend a class for which you are registered, please notify the Training Center Registrar
immediately in order that we may offer your seat to another student.

42

U. S. TRAINING CENTER SCHEDULES, LOCATIONS, AND RATES

CUPERTINO | FULLERTON | ROCKVILLE Data Data Customer
Title Customer Customer Customer Systems Terminals Service Boise
Course Training Training Training Division Division Division Division
Number | Length Price Center Center Center (Cupertino) | (Cupertino) | (Cupertino) (Boise)
Intro to HP mini's Sep 11 Sep 18
22951B Oct 16 Oct 16
4 days 400 Dec 4 Nov 27 Nov 27
Jan 8 Jan 8
22991A* HP 1000 DISC Sep 11 Sep 18 Sep 11
RTE Sep 25 Oct 23 Sep 25
Oct 9 Dec 4 Oct 9
10 days 1000 Oct 23 Jan 15 Oct 23
Nov 6 Feb 5 Nov 6
(Course includes Nov 27 Nov 27
RTE-IV operating Dec 11 Jan 15
system, batch Jan 8 Jan 29
spool monitor and Jan 22 Feb 26
file manager.) Feb 5
Feb 19
22992A* | HP 1000 Memory Dec 11 Dec 4
RTE
10 days 1000
22977A* IMAGE Sep 25 Oct 2 Nov 13
Nov 27 Dec 18 Feb 5
5 days 500 Jan 22 Feb 26
229528* 1000 ASMB Oct 23 Nov 13 Oct 9
Dec 11 Jan 29 Nov 6
5 days 500 Feb 5 Jan 29
22987A* DS/1000 Sep 18 Oct 23
User's Course Nov 6 Jan 8
Dec 11
5 days 500 Jan 29
229618* DS/1000 Jan 15
Theory of Op.
4 days 400
229628* DS/1000 to HP Jan 19
3000 Theory
of Op.
1 day 100
22990A* RTE-Driver Sep 11 Sep 6
Writing Nov 6 Dec 18
Feb 19 Feb 21
3 days 300

*These courses carry prerequisites — refer to the data sheet for each course for more information.

43

BULLETINS

U. S. TRAINING CENTER SCHEDULES, LOCATIONS, AND RATES
Continued)
CUPERTINO | FULLERTON | ROCKVILLE Data Data Customer
Title Customer Customer Customer Systems Terminals Service Boise
Course Training Training Training Division Division Division Division
Number | Length Price Center Center Center (Cupertino) | (Cupertino) (Cupertino) (Boise)
22980C* HP-IB Oct 30
Minicomputer Jan 15
Environment
4 days 400
22983B* HP 1000 E/F Oct 9
Microprogram- Jan 22
ming
5 days 500
92780A* HP-ATS Sep 25
Automatic Nov 27
Test System
5 days 1000
13294A Dev. Terminal Sep 11
Nov 13
5 days 500 Jan 8
Feb 26
22940A 2100 Maint. Sep 11
Oct 9
10 days 1000 Nov 6
Dec 4
Jan 22
Feb 26
22941A 21MX/XE Maint. Sep 11
Sep 25
5 days 500 Oct 16
Oct 30
Nov 27
Dec 4
Dec 11
Dec 18
Jan 8
Jan 15
Jan 29
Feb 5
22942A 7900 Maint. Oct 9
Nov 13
5 days 500 Jan 15
Feb 12

*These courses carry prerequisites — refer to the data sheet for each course for more information.

44

BULLETINS

U. S. TRAINING CENTER SCHEDULES, LOCATIONS, AND RATES

(Continued)
CUPERTINO | FULLERTON | ROCKVILLE Data Data Customer
Title Customer Customer Customer Systems Terminals Service Boise
Course Training Training Training Division Division Division Division
Number | Length Price Center Center Center (Cupertino) | (Cupertino) (Cupertino) (Boise)
22945A 7905 Maint. Sep 25
Oct 2
5 days 500 Oct 23
Oct 30
Nov 27
Dec 18
Jan 8
Feb 5
Feb 12
91302A 2645 Maint. Sep 4
3 days 300
22943A 79708 Maint. Sep 25
5 days 600
22944A 7970E Maint. Sep 18
5 days 600

“These courses carry prerequisites — refer to the data sheet for each course for more information.

45

U.S. TRAINING CENTER ADDRESSES

Cupertino

CUSTOMER TRAINING CENTER
19310 Pruneridge Avenue
Cupertino, CA 95014

(408) 996-9383

DATA SYSTEMS DIVISION
11000 Wolfe Road
Cupertino, CA 95014
(408) 257-7000

DATA TERMINALS DIVISION
19400 Homestead Road
Cupertino, CA 95014

(408) 257-7000

CUSTOMER SERVICE DIVISION
19310 Pruneridge Avenue
Cupertino, CA 95014

(408) 996-9383

46

Fulierton

CUSTOMER TRAINING CENTER
1430 E. Orangethorpe Avenue
Fullerton, CA 92631

(714) 870-1000

Rockville

CUSTOMER TRAINING CENTER
4 Choke Cherry Road

Rockville, MD 20850

(301) 948-6370

Boise

BOISE DIVISION

11311 Chinden Boulevard
Boise, Idaho 83702
(208) 377-3000

EUROPEAN TRAINING CENTER SCHEDULES AND LOCATIONS

Title
Course ‘ Milan (M)
Number Length Boblingen | Amsterdam | Madrid | Winnersh | Rome (R) | Stockholm{ Grenoble| Orsay | Vienna | Brussels

229658 RTE-II/IN Sep 25 Oct 9 Oct 23 Sep 4 |Oct 9 (M) Oct 9 Nov 6 | Oct 9 Oct 2
Oct 28 Dec 4 Nov 27

10 days

{Course includes
RTE-II/1Il operat-
ing system, batch
spool monitor and
file manager.)

22985A RTE-M Sep 18

5 days

22977A" IMAGE Sep 4 Nov 6 | Oct 23 Sep 25 {Oct 23

5 days

22952B* 1000 ASMB Sep 11 Sep 11 Oct 16 | Oct 16 |Sep 11 (MY Sep 11 Sep 18
Oct 23 Nov 6 Dec 11

5 days

22987A* DS/1000 Oct 9
User's Course

5 days

22961B* DS/1000
Theory of Op.

4 days

22962B*| DS/1000 to HP
3000 Theory
of Op.

1 day

22990A* RTE Driver
Writing

3 days

22980B* HP-1B Oct 16
Minicornputer Dec 11
Environment

4 days

22983A*| 21MX-E Micro-
programming

5 days

*These courses carry prerequisites — refer to the data sheet for each course for more information.
47

~ BULLETINS

EUROPEAN TRAINING CENTER SCHEDULES AND LOCATIONS

(Continued)
Title
Course Milan (M)
Number Length Boblingen | Amsterdam | Madrid { Winnersh | Rome (R)| Stockholm| Grenoble | Orsay | Vienna | Brussels
92780A* | HP-ATS Automatic
Test System
5 days
13294A Dev. Terminal
5 days
22940A 2100 Maint.
10 days
22841A | 21MX/XE Maint. Oct 2
Feb 26
5 days
22942A 7900 Maint. Sep 18
Dec 4
5 days Mar 5
22945A | 7905/06 Maint. Oct 9
Dec 11
5 days Feb 19
Apr 2
22984A 7920 Maint. Nov 6
Apr 9
5 days
91302A 2645 Maint. Oct 2
Jan 22
3 days
22943A | 7970B/E Maint. Sep 25
Jan 15
5 days Mar 26
40270A Intro to HP Sep 25 Oct 9
Computers
5 days
22965B- FORTRAN IV Oct 16 Oct 2
HO1
5 days

*These courses carry prerequisites. Refer to the data sheet for each course for more information.

48

BULLETINS

EUROPEAN TRAINING CENTER ADDRESSES

Boblingen

Kundenschulung
Herrenbergerstrasse 110
D-7030 Boblingen, Wurttemberg
Tel: (07031) 667-1

Telex: 07265739

Cable: HEPAG

Brussels

Avenue du Col Vert, 1
Groenkraaglaan
B-1170

Brussels, Belgium
Tel: (02) 872 22 40

Stockholm

Enighetsvagen 1-3, Fack
S-161 20 Bromma 20
Tel: (08) 730 05 50
Cable: MEASUREMENTS
Stockholm

Telex: 10721

Madrid

Jerez No. 3
E-Madrid 16
Tel: (1) 458 26 00
Telex: 23515 hpe

Amsterdam

Van Heuven Goedhartlaan 121
Amstelveen - 1134
Netherlands

Tel: 02 672 22 40

49

Orsay

Quartier de Courtaboeuf
Boite Postale No. 6
F-91401-Orsay

France

Tel: (01) 907 7825

Grenoble

5, avenue Raymond-Chanas
38320 Eybens

Tel: (76) 25-81-41

Telex: 980124

Vienna

Handelskai 52

Postfach 7

A - 1205 Wien

Tel: (0222) 35 16 21-32
Telex: 75923

Cable: Hewpack Wien

Milan

Via Amerigo Vespucci, 2
20124 Milan

Tel: (2) 62 51

Cable: HEWPACKIT Milano
Telex: 32046

Winnersh

King Street Lane
Winnersh, Workingham
Berkshire RG11 5 AR
Tel: Workingham 784774
Cable: Hewpie London
Telex: 8471789

HEWLETT-PACKARD
COMPUTER SYSTEMS COMMUNICATOR ORDER FORM

Please Print:
Name Date
Company
Street
City State Zip Code
Country
(] HP Employee Account Number Location Code
[DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-61 1'1
5951-6112 COMMUNICATOR 2000 25.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6112
5951-6113 COMMUNICATOR 3000 48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6113
(] BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability) Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 —__ $%0.00
10.00
- ____ 10.00
TOTAL DOLLARS
5951-6112 COMMUNICATOR 2000 $ 5.00
5.00
5.00
TOTAL DOLLARS
5951-6113 COMMUNICATOR 3000 —_ __ $%10.00
10.00
10.00

TOTAL DOLLARS
TOTAL ORDER DOLLAR AMOUNT

(] SERVICE CONTRACT CUSTOMERS

You will receive one copy of either COMMUNICATOR 1000,
2000, or 3000 as part of your contract. Indicate additional
copies below and have your local office forward. Billing will
be included in normal contract invoices.

Number of additional copies

[FOR HP USE ONLY|
CONTRACT KEY

5951-6111 Number of additional copies
5951-6112 Number of additional copies
5951-6113 Number of additional copies

Approved

HEWLETT-PACKARD
COMMUNICATOR SUBSCRIPTION AND ORDER INFORMATION

The Computer Systems COMMUNICATORS are bi-monthly systems support publications availahle from Hewlett-Packard
on an annual {6 issues) subscription.

The following instructions are for customers who do not have Software Service Contracts.

1. Complete name and address portion of order form.

2. For new direct subscriptions (see sample below):

Indicate which COMMUNICATOR publication(s) you wish to receive.

b. Enter number of copies per issue under Qty column.

c. Extend dollars (quantity x list price) in Extended Dollars column.

d. Enter discount dollars on line under Extended Dollars. {If quantity is greater than 1 you are entitled to a 40% discount.”)
e. Enter Total Dollars (subtract discount dollars from Extended List Price dollars).

®

*To qualify for discount all copies of publications must be mailed to same name and address and ordered at the same time.

SAMPLE
DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 3 s4800 8/44.00
(if quantity is greater than 1 discount is 40%) 57 60
TOTAL DOLLARS for 5951-6111 #86-40

3. To order back issues {see sample below):
Indicate which publication you are ordering.
Indicate which issue number you want.
Enter number of copies per issue.

Extend dollars for each issue.

Enter total dollars for back issues ordered.

All orders for back issues of the COMMUNICATORS are cash only orders (U.S. dollars only) and are subject to availability.

®ao0 o

SAMPLE
[X] BACK ISSUE ORDER FORM (cash only in U.S. dollars)

(subiect to availability} Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 XX / $10.00 B/0.00

XX 2 10.00 20-00

_ 10.00
TOTAL DOLLARS #30.00

4. Domestic Customers: Mail the order form with your U.S. Company Purchase Order or check (payable to Hewlett-
Packard Co.) to:
HEWLETT-PACKARD COMPANY
Computer Systems COMMUNICATOR
P.O. Box 61809
Sunnyvale, CA 94088
U.S.A.

5. International Customers: Order by part number through your local Hewlett-Packard Sales Office.

. dmam e e Cakr R mm s e, T e e amm) e e mam e e eem e e

HEWLETT-PACKA

RD

COMPUTER SYSTEMS COMMUNICATOR ORDER FORM

Please Print:

Name Date
Company
Street
City State 2ip Code
Country
[T HP Employee Account Number Location Code
[J DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6111
5951-6112 COMMUNICATOR 2000 25.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6112
5951-6113 COMMUNICATOR 3000 48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 56951-6113
(J BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability) Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $10.00
10.00
- 1000
TOTAL DOLLARS
5951-6112 COMMUNICATOR 2000 $ 5.00
5.00
5.00
TOTAL DOLLARS
5951-6113 COMMUNICATOR 3000 $10.00
10.00
10.00

TOTAL DOLLARS
TOTAL ORDER DOLLAR AMOUNT

(J SERVICE CONTRACT CUSTOMERS

You will receive one copy of either COMMUNICATOR 1000,
2000, or 3000 as part of your contract. Indicate additional
copies below and have your local office forward. Billing will
be included in normal contract invoices.

Number of additional copies

LFOR HP USE ONLY]

CONTRACT KEY

5951-6111
5951-6112
5951-6113

Approved

Number of additional copies
Number of additional copies
Number of additional copies

HEWLETT-PACKARD
COMMUNICATOR SUBSCRIPTION AND ORDER INFORMATION

The Computer Systems COMMUNICATORS are bi-monthly systems support publications available from Hewlett-Packard
on an annual {6 issues) subscription.

The following instructions are for customers who do not have Software Service Contracts.

1. Complete name and address portion of order form.

2. For new direct subscriptions (see sample below):

Indicate which COMMUNICATOR publication(s) you wish to receive.

b. Enter number of copies per issue under Qty column.

c. Extend dollars (quantity x list price} in Extended Dollars column.

d. Enter discount dollars on line under Extended Dollars. (If quantity is greater than 1 you are entitled to a 40% discount.”)
e. Enter Total Dollars {subtract discount dollars from Extended List Price dollars).

o

*To qualify for discount all copies of publications must be mailed to same name and address and ordered at the same time.

SAMPLE

DIRECT SUBSCRIPTION List Extended Total

Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 3 s4800 #/44.00

(if quantity is greater than 1 discount is 40%) 57. 60

TOTAL DOLLARS for 5951-6111 #86.40

3. To order back issues {see sample below):
a. Indicate which publication you are ordering.
b. Indicate which issue number you want.
c. Enter number of copies per issue.
d. Extend dollars for each issue.
e. Enter total dollars for back issues ordered.

All orders for back issues of the COMMUNICATORS are cash only orders (U.S. dollars only) and are subject to availability.

SAMPLE
[x] BACK ISSUE ORDER FORM {cash only in U.S. dollars)

(subject to availability) Issue List Extended Total

Part No. Description No. Qty Price Dollars Dollars

5951-6111 COMMUNICATOR 1000 XX / $10.00 $,0.00
XX 2 1000 20-00
. 10.00

TOTAL DOLLARS #30.00

4. Domestic Customers: Mail the order form with your U.S. Company Purchase Order or check (payable to Hewlett-
Packard Co.) to:
HEWLETT-PACKARD COMPANY
Computer Systems COMMUNICATOR
P.O. Box 61809
Sunnyvale, CA 94088
U.S.A.

5. International Customers: Order by part number through your local Hewlett-Packard Sales Office.

e e e . —— —— . ——— — —— — — —— —— — — — — — — — — — — —— — — — — — ——— — — — — —— | — — ——— ——— — — — — — ——— — — —— — — —— — —

|

Please photocopy this order form if
you do not want to cut the page off.
You will automatically receive a new
order form with your order. CONTRIBUTED SOFTWARE
Direct Mail Order Form

HEWLETT 0p; PACKARD

Please Print:

Name Title

NOTE: No direct mail order can be
shipped outside the United States.

Company

Street .

City State
Country

Zip Code

Item Part

No. No. Qty. Description

List Price Extended
Each Total

*Tax is verified by computer according to your ZIP CODE. If no sales tax is
added, your state exemption number must be provided: #
If not, your order may have to be returned.

Domestic Customers: Cash required on all orders less than $50.00. Mail the order
form with your check or money order (payable to Hewlett-
Packard Co.) or your U.S. Company Purchase Order to:

HEWLETT-PACKARD COMPANY
Contributed Software

P.O. Box 61809

Sunnyvale, CA 94088

Sub-total

Your State & Local
Sales Taxes™

Handling Charge 11 50

TOTAL

International Customers: Order through your local Hewlett-Packard Sales office. No direct mail order can be shipped

outside the United States.

All prices domestic U.S.A. only. Prices are subject to change without notice.

Ordering Information

ORDERING INFORMATION

Programs are available individually in source language on either paper tape, magnetic tape, or
cassettes as indicated in the abstracts.

To order a particular program, it is necessary to specify the program identification number, together
with an option number which indicates the type of product required. The program identification
number with the option number composes the ordering number.
For example:

22113A-K01

The different options are.

K01 — Source paper tape and documentation
K21 — Magnetic tapes and documentation

NOTE
Specify 800 BPI or 1600 BPI Magnetic tape.
B01 — Binary tape and documentation
D00 — Documentation
L00 — Listing

Not all options are available for all programs.

Ten-digit numbers do not require additional option numbers such as K01, K21, etc. The 10-digit
number automatically indicates the option or media ordered.

For example:

22681-18901 — The digits 189 indicate source paper tape plus documentation.

22681-10901 — The digits 109 indicate source magnetic tape plus documentation (800 BPI
magnetic tape)

22681-11901 — The digits 119 indicate source magnetic tape plus documentation (1600
BPI magnetic tape)

22681-13301 — The digits 133 indicate source cassettes plus documentation

Only those options listed in each abstract are available.
Refer to the Price List for prices and correct order numbers.

Hewlett-Packard offers no warranty, expressed or implied and assumes no responsibility in
connection with the program material listed.

@ ——— e e . ——— i — — —— —— — — —— —— T — ——— o —— — — . — . — —— — —— ot — — — oo v v o ot s et s e

— o ——— e e G e —— . e s S e e e e e s

—— e e e e e e e S e v = —— e —— — — — o— —

HEWLETT-PACKARD
LOCUS CONTRIBUTED SOFTWARE CATALOG
DIRECT MAIL ORDER FORM

Please Print:
Name Title
Company
Street
City State Zip Code
Country
(] HP Employee Account Number Location Code
List Price Extended
Part Number Description Qty. Each Total
22000-90099 Locus Contributed Software Catalog $15.00
*If no sales tax is added, your state exemption number must Your State & Local
be provided: # Sales Taxes*
If not, your order may have to be returned. Handling Charge 1.50

Domestic Customers: Mail the order form with your check or

TOTAL

money order (payable to Hewlett-Packard Co.) to:

HEWLETT-PACKARD COMPANY
LOCUS CATALOG

P.O. Box 61809

Sunnyvale, CA 94088

International Customers: Order by part number through your local Hewlett-Packard Sales Office.

NOTE: No direct mail order can be shipped outside the United States. All prices domestic U.S.A. only. Prices are

subject to change without notice.

e e - ——— M S - — —— — —— ——— — —— —— — . . St o —— — —— — ———— — — — — — — — —— —— ———— —— | | o i | bt

— ——— — —— — —— . m—w m— o — —

COMPUTER SYSTEMS COMMUNICATOR
NOT TO BE USED FOR ORDERING COMMUNICATOR SUBSCRIPTIONS

HEWLETT | ﬁ PACKARD
Direct Mail
SHIP TO. Parts and Supplies Order Form
NAME
CUSTOMER
COMPANY REFERENCE #
STREET TAXABLE"?
CITY STATE ZIP CODE
Item |Check Part Qty. Description List Price Extended
No. | Digit No. Each Total
Special Instructions
Sub-total
“Tax is verified by computer according to your ZIP CODE. If no sales tax is Your State & Local
added, your state exemption number must be provided: = ______ . Sales Taxes®
1f not, your order may have to be returned.
Check or Money Order, made payable to Hewlett-Packard Handling Charge 1] 50
Company, must accompany order.
))] TOTAL
When completed, please mail this form with payment to:
HEWLETT-PACKARD COMPANY
Mail Order Department Phone: (415) 968-9200
P.O. Drawer #20
Mountain View, CA 94043
Most orders are shipped within 24 hours of receipt. Shipments to California, Oregon and Washington will be made via UPS. Other
shipments will be sent Air Parcel Post, with the exception that shipments over 25 pounds will be made via truck. No Direct Mail
Order can be shipped outside the U.S.

Although every effort is made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard can-
not assume liability for the information contained herein.

Printed in U.S.A. 9/78

Prices quoted apply only in U.S.A. If outside the U.S., contact
your local sales and service office for prices in your country.

Part No. 5951-6111

~~

D,

v

